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Abstract 
 
Coastal hazard assessment and mitigation requires a thorough understanding of extreme events such as severe storm 
surge. Limited observations and a changing climate pose an additional challenges for long-term planning and require 
ensemble modeling to be effective. Tropical cyclones (TCs) distributions are projected to change in a warming climate, 
but impacts to coastal communities require detailed simulations including local bathymetry features and often involve a 
wide range of spatial scales. Adaptive mesh refinement (AMR) is one approach to reduce computational costs by 
performing high-resolution simulation only in regions which require it, such as a coastal region experiencing storm 
surge, and minimizing costs elsewhere. To estimate the effects of climate change on extreme coastal hazards, we apply 
a dynamical downscaling methodology to generate two TC ensembles based on Typhoon Haiyan in 2013, one in the 
present climate and one in a pre-industrial climate. We then use these storm fields as forcing terms in GeoClaw, a 
storm surge model with AMR, to estimate the coastal impacts of these changes to TC distributions. 
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1. Introduction 
 
Storm surge, a coastal flooding hazard caused by tropical cyclones (TCs), is a major concern for coastal 
communities as highlighted by recent severe events such as Hurricane Sandy in 2012 and Typhoon Haiyan 
in 2013. For effective risk assessment and mitigation planning, accurate knowledge of extreme event 
distributions over long periods is desired. TC intensity has been observed to be increasing over the past few 
decades and is closely correlated with sea surface temperature (SST) rise (Emanuel, 2005). Climate change 
is projected to affect distributions of TCs including changes to storm tracks, frequency of cyclogenesis, and 
intensity (Mori and Takemi, 2016). However, estimation of the resulting impacts to coastal hazard 
distributions poses further challenges. 
 Storm surge is driven by strong winds and sea level pressure gradients but is highly sensitive to 
storm track and local bathymetry features which can amplify surge levels. As a result, careful 
understanding of TC behavior as well as ensemble modeling are necessary to make robust projections of 
surge events. However, since coastal inundation modeling occurs over a large range of spatial scales, with 
storm tracks extending thousands of kilometers and with human structures spanning tens of meters, 
numerical simulation can be challenging. To resolve the fine spatial scales along coastlines while 
minimizing total computation costs we implement a model with adaptive mesh refinement (AMR) that 
adjusts grid size dynamically to track features of interest. In this study we present a methodology to 
evaluate climate change impacts on storm surge events using this lower computational approach.  
 In November 2013 the coastal city of Tacloban in the Philippines was devastated by Typhoon 
Haiyan, one of the most intense TCs to make landfall ever recorded. Tacloban experienced storm surge of 
over 5m and the region suffered nearly 6000 casualties. Assessment of such worst-case extreme weather 
events is important for disaster prevention and mitigation. However, estimating the severity of future 
events is difficult with limited historical observations and a changing climate. To assess the potential 
impact of climate change on extreme events such as this one, an approach known as probabilistic event 
attribution has been proposed (Pall et al, 2011). Under this framework, two sets of ensemble simulations 
are performed using an atmospheric general circulation model (AGCM) - one which includes the effects of 
anthropogenic greenhouse gas forcing and one which does not. In this study we investigate changes in 
severity for the Haiyan surge event based on observed climate conditions and on a projected pre-industrial 
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climate condition. Since SST and air temperature are the important climatic factors for TC intensity 
(Emanuel, 2005) we incorporate their change in our approach. It should be noted that in this study we are 
only interested here in the potential amplification of a worst-case event and not in its frequency. 
 In this study we use ensemble dynamical downscaling from a 60 km AGCM to a high-resolution 1 
km mesoscale forecast model to reproduce the TC Haiyan event, considering both present-day and pre-
industrial climate conditions. Then we use the resulting wind and pressure fields as momentum forcing 
terms in a depth-averaged ocean model to generate storm surge in the target location at Leyte Gulf. Finally 
we compare the surge levels between the two ensembles and estimate the contribution of climate change to 
the severity of the TC Haiyan surge event. 
 
2. Methodology 
 
To produce the tropical cyclone ensembles (whose wind and pressure fields will be used as forcing terms in 
the storm surge model) we follow the dynamical downscaling methodology of Takayabu et al, (2015) but 
where those authors used SuWAT for their surge model we use GeoClaw. A schematic diagram of the 
downscaling methodology is shown in Figure 1. The parent model, used to obtain the initial and boundary 
conditions, is the Japan Meteorological Agency’s Weekly Ensemble Prediction (WEP) model (Sakai et al, 
2009). The WEP is a global spectral model with an effective 60 km resolution and an ensemble of 51 
members was produced using the singular vector method (Buizza and Palmer, 1995). Downscaling to 1-km 
resolution was then performed using a series of nested models to avoid producing shocks at the boundary. 
First was a non-hydrostatic regional climate model (NHRCM) (Sasaki et al, 2011) at 20 km resolution, 
where spectral nudging was applied to reproduce the TC track of the parent model. The next step was using 
the NHRCM at 5 km resolution (NHRCM05) with a Kain-Fritsch convective parametrization scheme 
(Kain and Frisch, 1990, 1993). Storm tracks computed by NHRCM05 are shown in Figure 2. Then a high-
resolution Weather Research and Forecasting (WRF) model was used incorporating explicit cloud 
microphysics (Skamarock et al, 2008), first at 3-km and finally at 1-km resolution.  
 

 
Figure 1. Schematic diagram of PGWD methodology (adapted from Takayabu et al, 2015).  

In the previous study of Takayabu et al (2015), due to computational constraints only a subset of the 
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ensemble members was used in the WRF downscaling. For comparison with this study we use a similar 
subset determined as follows. First, to capture the range of TC behavior in the ensemble, three cases were 
selected: case 02m whose track passed closed to the observed track at Samar and Leyte Islands (roughly at 
11N° 125E°); case 11m which had the lowest minimum central pressure (MCP) in NHRCM05; and case 
18p which had the highest MCP in NHRCM05. Then, to capture the storm surge levels around Tacloban, 
all ensemble members whose storm track passed within 50 km of the observed track at Samar and Leyte 
Islands were selected. Seven additional members met this criteria: cases 05m, 12m, 15m, 21m, 25m, 06p, 
and 09p. Initial integration time for all cases was set at 18UTC 5 November 2013 (referred to as #1001). 
For case 02m, two additional integration times were considered: 12UTC 5 November (#1000) and 00UTC 
6 November (#1002). In total twelve ensemble members were considered for the WRF downscaling and 
storm surge simulation. 
 

 
Figure 2.  Storm tracks of Typhoon Haiyan ensemble computed by NHRCM05. The solid black line 
represents best track data marked at six-hour intervals (from Takayabu et al, 2015). 

 
 A pre-industrial climate ensemble (denoted NAT) is generated from the present-day climate 
ensemble (denoted ALL) using the Pseudo Global Warming Downscaling (PGWD) methodology, where 
differences in SST and air temperature between past and present climates are incorporated in the boundary 
conditions when downscaling from WEP. The anthropogenic SST warming is derived from the linear trend 
in monthly data from Hadley Centre Sea Ice and Sea Surface Temperature data set for 1870-2012 (Rayner 
et al, 2003, Christidis and Stott 2014, Shiogama et al, 2014), with a difference ranging from 0.2 K to 0.8 K 
in the target area (100°-180°E, 5°-25°N). The air temperature warming is derived from two ensemble 
simulations of the MIROC5-AGCM (Watanabe et al, 2010, Shiogama et al, 2014) using the SST signal. 
The average tropospheric and stratospheric differences in the target area in November of 2010-2012 were 
+0.5K and -1.5K, respectively. For more details see Takayabu et al (2015). 
 
3. Numerical storm surge model 
 
In this study we model the long-wave behavior of storm surge including inundation over land. We do not 
consider the effect of waves and tides, and although these can be significant the maximum tidal range in 
the target area is 0.7 m and was close to mean water level when Haiyan made landfall. 
 The governing equations for the surge model are the nonlinear shallow water equations with 
bathymetry and source terms: 
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where h is water column height, u and v are depth-averaged velocities, g is the gravitational constant, and b 
is bathymetry height. The remaining source terms Sx and Sy are given by: 
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where f is the Coriolis parameter, ρ and ρair are densities of water and air, Pa is sea level pressure, Cw and Cf are the wind stress and bottom friction coefficients, and W=(Wx , Wy ) is wind speed. 
 The bottom friction is given by a Manning’s n law: 
 

ࢌ࡯ = ૚ିࢎ૛࢔ࢍ ૜⁄  
 
where n=0.022 for regions below mean sea level and n=0.03 for regions above mean sea level. 
 The wind stress coefficient is given by a Mitsuyasu & Kusaba law: 
 

࢝࡯ = ቊ൫૚. ૛ૢ૙ − ૙. ૙૛૝หࢃሬሬሬሬԦห൯ × ૚૙ି૜, ሬሬሬሬԦหࢃหࢌ࢏ < ૡ
൫૙. ૞ૡ૚ + ૙. ૙૟૜หࢃሬሬሬሬԦห൯ × ૚૙ି૜, ሬሬሬሬԦหࢃหࢌ࢏ ⩾ ૡ 

 
This wind drag coefficient is typically used with an upper bound at 30 m/s. However, since our surge 
model doesn’t incorporate short wave effects we compensate by omitting the upper limit, as suggested by 
(Kawai, et al, 2011). 
 For the numerical storm surge model we use GeoClaw, a finite volume solver for 2-dimensional 
(depth-averaged) flows with AMR (Mandli et al 2016, Mandli and Dawson, 2014, Clawpack Development 
Team, 2017) . GeoClaw employs Riemann solvers for numerical evolution including shocks and 
inundation conditions. Radiative boundary conditions are used at lateral boundaries. The domain is 
spatially discretized by logically-rectangular grids of size 0.25°, with variable grid resolution determined at 
runtime based on state variables and forcing terms. A total of six refinement levels were used, with grid 
refinement ratios of 1:2 from levels 1 to 5 and 1:4 at level 6 (corresponding to a grid size of roughly 400 
m). Grid refinement is based on water current speed (refinement at intervals of 1 m/s), water height from 
sea level (full refinement at 1 m deviation), wind speed (refinement at 20 m/s, 40 m/s, 60 m/s), and 
proximity to the storm center (refinement at 60 km, 40 km, 20 km). A snapshot of wind speeds and 
refinement regions is shown in Figure 3. 
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Figure 3. Snapshot of wind speeds for a Haiyan-like storm. Black rectangles indicate regions of grid 
refinement in GeoClaw surge model, based on proximity to storm center, wind speed, and water current 
speed. 
 
 The computational domain is the region 111°E to 149°E and from 4°S to 29°N. Elevation data is 
provided by the General Bathymetric Chart of the Oceans GEBCO 2014 Grid (GEBCO, 2014) with 
resolution of 30 arc-seconds (roughly 1km).  Atmospheric forcing terms are given by the corresponding 
WRF 1 km simulation data at 1-hour intervals. Forcing data at other times is given by estimating the storm 
center via linear interpolation of the storm centers in the preceding and following storm snapshots, 
followed by shifting the two snapshots accordingly and applying a weighted average. Landfall times are 
different for each member, but integration begins roughly two days before landfall and ends roughly two 
days after landfall. Timestep size in each refinement region is determined based on the CLF condition. 
 
4. Results and discussion 
 
Mininum central pressure ranged from 951 hPa to 906 hPa (compared with actual estimated minimum 
central pressure of 895 hPa) and maximum wind speeds ranged from 50 m/s to 63 m/s (compared with 
actual estimated wind speed of 64 m/s). Comparing the NAT and ALL ensembles, there was an average 
increase in intensity of 6.6 hPa and 3.2 m/s in the present climate with a significance level of 1% 
(Takayabu et al, 2015). A comparison of these typhoon characteristics is shown in Figure 4. 
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Minimum central pressure (hPa) 

 

Maximum wind speed (m/s) 

 
Figure 4. Comparison of minimum central pressure (left) and maximum wind speed (right) between 
corresponding ensemble members of past and present climate scenarios. 
 
 Maximum surge level is given as maximum water height about mean sea level in the Leyte Gulf 
area, from 124.9°E to 125.9°E and from 10.4°N to 11.4°N, monitored at a spatial resolution of 
approximately 1 km in space and 10 minutes in time. Maximum surge ranged from 0 m (case #1001 11m 
NAT) to 3.9 m (case #1001 02m NAT). Mean maximum surge level was 1.70 m in the NAT ensemble and 
2.04 m in the ALL ensemble, suggesting an increase of 20% in surge height. Standard deviations were 1.29 
m and 1.20 m, respectively. A summary of the numerical results is shown in Table 1. 
 

Case name MCP (hPa) Max wind speed (m/s) Max surge height (m) Runtime (s) 
NAT #1000 02m 919.12 60.93 2.86 1122 
ALL #1000 02m 913.26 62.34 1.71 1036 
NAT #1001 02m 910.86 60.10 3.86 1240 
ALL #1001 02m 906.46 62.96 2.32 1094 
NAT #1002 02m 909.12 60.84 3.57 1276 
ALL #1002 02m 910.65 63.31 1.62 1259 
NAT #1001 05m 928.42 59.29 1.44 905 
ALL #1001 05m 925.09 61.63 2.19 1011 
NAT #1001 06p 929.49 55.51 1.84 884 
ALL #1001 06p 929.28 57.36 2.67 893 
NAT #1001 09p 931.24 55.38 2.64 1086 
ALL #1001 09p 924.91 58.68 2.00 1009 
NAT #1001 11m 919.64 53.20 0.40 860 
ALL #1001 11m 911.93 57.84 3.59 2316 
NAT #1001 12m 931.06 57.64 0.84 868 
ALL #1001 12m 923.46 59.47 3.63 1081 
NAT #1001 15m 936.06 55.22 0.39 1383 
ALL #1001 15m 930.37 58.14 0.26 1659 
NAT #1001 18p 937.47 59.30 0.86 941 
ALL #1001 18p 930.8 61.19 1.05 969 
NAT #1001 21m 951.54 49.83 0.00 666 
ALL #1001 21m 933.42 57.82 0.06 1012 
NAT #1001 25m 944.51 54.99 1.70 1086 
ALL #1001 25m 929.12 60.70 3.47 1875 

 
Table 1. Summary of ensemble member experiments. Mean central pressure (MCP) and maximum wind 
speed are from the entire computation, but the maximum surge height is observed only in the target region 
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around Leyte Gulf. Runtime is wall time using 32 threads. 
 Maximum water levels at Leyte Gulf for each ensemble member are shown in Figure 5 for the 
present-day ensemble and in Figure 6  for the pre-industrial ensemble. Note that maximum water level 
monitoring here is performed only at regions of grid refinement level 3 and above, so some cases with low 
surge levels appear to have blocky regions of higher water levels. 
 

Maximum surge levels for present-day climate ensemble (ALL)  

ALL case 02m #1000 ALL case 02m #1001 ALL case 02m #1002 

ALL case 05m #1001 ALL case 06p #1001 ALL case 09p #1001 

ALL case 11m #1001 ALL case 12m #1001 ALL case 15m #1001 

ALL case 18p #1001 ALL case 21m #1001 ALL case 25m #1001 
 
Figure 5. Maximum water level at Leyte Gulf for ensemble members in the present-day ensemble (ALL). 
The color range is from 0 to 4 m. 
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Maximum surge levels for pre-industrial climate ensemble (NAT)  

NAT case 02m #1000 NAT case 02m #1001 NAT case 02m #1002 

NAT case 05m #1001 NAT case 06p #1001 NAT case 09p #1001 

NAT case 11m #1001 NAT case 12m #1001 NAT case 15m #1001 

NAT case 18p #1001 NAT case 21m #1001 NAT case 25m #1001 
 
Figure 5. Maximum water level at Leyte Gulf for ensemble members in the present-day ensemble (ALL). 
The color range is from 0 to 4 m. 
 
 We see from Figures 5 and 6 a striking variety of surge distributions. Storm track was a very 
important factor in determining surge height in this experiment, especially due to the amplification effects 
of geographic features at Leyte Gulf (Mori et al 2014). Despite increased intensity in all storms in the 
present climate compared with past climate, surge height did not uniformly increase and in several cases 
actually decreased. In terms of TC modeling, a storm track deviation on the order of tens of kilometers is 
fairly low but can result in drastically different surge estimates.  
 Using AMR allows for greatly reduced computation time. Each of these simulated 4-day scenarios, 
with spatial resolution as high as 400m, took 10-40 minutes of wall time using 32 threads. While 
conventional fixed nested grids can also be efficient, the computation cost with AMR depends on the 
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severity of the storm surge so in ensemble modeling most runs will have lower cost than the worst-case 
scenario. In this experiment, only three runs out of twenty-four required more than 25 minutes of 
computation.  
 
5. Conclusions 
 
Estimation of extreme coastal hazards considering the influence of climate change is an important but 
challenging problem for hazard estimation and mitigation. In this study a dynamical downscaling ensemble 
framework has been presented to estimate the effect of climate change on an extreme storm surge event in 
the Philippines. It is indicated that surge levels for a Typhoon Haiyan-like storm would have been roughly 
20% lower in a pre-industrial climate, based on atmospheric downscaling experiments incorporating 
projected climate trends. However, due to the large effect of geographical features in amplifying surge 
height and the wide range of storm tracks in the TC ensemble, it is difficult to be certain of this projected 
result without a larger ensemble. 
 Low cost models are vital to performing efficient ensemble projections for coastal inundation and 
AMR methods provide a useful and effective tool for these projections. The cost of computing storm surge 
in such dynamical downscaling experiments can now be considered minimal, so possibly low-cost 
atmospheric models should be considered for larger ensembles. In particular, since surge height is so 
sensitive to storm track it is especially important to use a large ensemble of tropical cyclones for more 
robust trend estimation. Further studies could incorporate the frequency of tropical cyclones under climate 
change with storm track and intensity to provide more usable estimates of extreme event distributions for 
hazard mitigation.  
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