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Abstract 

 

This paper addresses the feasibility of a combined model that includes longshore sediment transport effects in a cross-

shore shoreline evolution model. Longshore transport produces long-term changes of the beach morphology and 

shoreline position. The longshore contribution is worked out on the basis of the one-line approach in which the 

shoreline position in time depends on the alongshore gradient of the volumetric sediment transport rate. The analysis 

provides a relationship between the equilibrium shoreline angle and the wave forcing direction. It also yields a 

shoreline evolution equation generated by the sole longshore transport. This model is included in the Splinter et al. 

(2014) behavioral model. This combined model was calibrated on the Narrabeen semi-embayed beach data (Turner et 

al., 2016). The results are that the combined model is able to reproduce the shoreline trends and that the longshore 

component contributes to the seasonal shoreline fluctuations. 
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1. Introduction 

 

Long-term modeling (decades) of shoreline changes cannot be easily challenged with physics based 

models. The best alternative is to use simple behavioral template models (Davidson & Turner, 2009), all 

the complex cross-shore erosion/accretion processes being encapsulated in a few parameters. Most of these 

cross-shore models draw on the phenomenological idea that a beach relaxes towards equilibrium (Wright & 

Short, 1984; Kriebel & Dean, 1993). Calibrated against reliable data series of cross-shore changes, this 

type of model reaches good predictive skills (Splinter et al., 2014; Castelle et al., 2014). A constant is 

usually added to the model equation to account for unexplained shoreline motions such as long-term trends 

uncorrelated with wave climate changes at small time scales (days or weeks). However, the long-term 

shoreline variations are the result of complicated processes and just one constant free parameter is not 

sufficient. The shoreline model needs thus to be improved by taking into account the longshore process 

expressed by a better parameterization. 

Amongst the processes not accounted for are the longshore transport gradients contributions to the 

shoreline changes. These gradients of course are important in non-straight shorelines such as embayed 

beaches (Turki et al., 2013). The curvature of an embayed beach shoreline is related to the refraction and 

diffraction of the waves as they propagate from deep waters towards the breaking point. A stretch of beach 

is at equilibrium if the time average wave direction is orthogonal to the shoreline. Any wave forcing which 

departs from that average direction will create a longshore sediment transport and since the shoreline 

orientation changes alongshore, it produces a transport gradient that results in changes of shoreline 

position. To account for this, a one-line approach is adopted. 

In section 2.1, the cross-shore model of Splinter et al. (2014) (hereinafter called STDBCO14) is recalled 

and was implemented for sake of comparison. The longshore model which is suggested by supplementing 

the shoreline model is presented in section 2.2. The combined model is presented in section 2.3. The 

shoreline evolution models were calibrated on Narrabeen beach data (Turner et al., 2015) which is now 

open access and described in section 3. The model result analysis is mentioned in section 4. Section 5 is for 

the discussion and conclusion. 
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2. Methods 

 

2.1. Cross-shore model 

 

The STDBCO14 cross-shore shoreline model reads:  

  

 
dS

c F rF d
dt


                   (1)

     
where S(t) is the shoreline position in the transect, t is time in days, c (m

1.5
days

-1
W

-0.5
) and d (m/days) are 

free parameters adjusted by an optimization method. The forcing term F is defined by (Splinter et al., 

2014): 
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F P
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                    (2) 

where P is the incident wave power; Ω(t) is the dimensionless fall velocity of Gourlay number: 
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  ; Hs is the significant wave height; Tp is the peak wave period; ωs  is the sediment fall velocity 

(Cheng, 1997).   is the disequilibrium dimensionless fall velocity,    
0
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is the 

standard deviation of  . The equilibrium dimensionless fall velocity Ω0(t) is defined by (Wright and 

Short, 1984; Davidson et al., 2013): 
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where ϕ (days) is the 'memory decay', D = 2ϕ, Δt is the forcing survey time interval, j is the number of data 

points in the survey time series prior to the calculation point at time t (Davidson et al., 2013). 

The forcing term F is differentiated between accretion and erosion with F
+ 

and F
-
, respectively. If F > 0, F 

= F
+
. Conversely, if F < 0, F = F

-
. The parameter r called the erosion ratio is the ratio of accretionary 

component to erosional component (Splinter et al., 2014): 
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where N is the total record length (Splinter et al., 2014), Fi
+ 

and Fi
- 
are the measured forcing functions. 

 

2.2. Longshore model 

 

In equation (1), d represents the long-term trend of the shoreline evolution and all unexplained shoreline 

motions. Amongst the main unexplained shoreline motions are of course those related to the longshore 

sediment drift. In equation (1), the constant d is replaced by a model accounting for this longshore drift of 

sediment. Wave incidence will trigger a longshore drift and since the drift magnitude depends on the 

shoreline orientation a gradient in longshore transport is possible that it will produce a shoreline position 

change. This is particularly true in embayed beaches exhibiting curvatures. 
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Our underlying assumption is thus that for oblique waves the cross-shore component of the wave energy 

feeds into specific shoreline motions described by (1) and that alongshore wave energy transferred to the 

transport drift generates shoreline variability for beaches with alongshore orientation variability. 

The volumetric longshore sediment transport rate Q is written (Reeve, 2004; Idier et al., 2011): 

 

    5/2 5/2

1 , 1 ,sin 2 sin 2s b b s bQ K H t x K H                      (5) 

   b t x                      (6) 

 

where K1 is a constant defined by sediment characteristics, K1 ≃ 0.1 to 0.2 m
1/2

s
-1

; Hs,b is the significant 

wave height at breaking point; β(x) is the shoreline orientation, αb (t) is the orientation of incident wave 

field (Fig. 1).  

 

 

 

Figure 1: Definition of wave angle and shoreline angle. From the horizontal line, an angle measured clockwise is 

positive and an angle measured counterclockwise is negative. 

 

The relationship between the shoreline position and the volumetric longshore transport rate is (Pelnard-

Considère, 1956): 

 

1

c

S Q

t h x

 
 

 
                   (7) 

where hc is the closure depth.  

 

2.2.1. Equilibrium shoreline orientation 

The most important issue of shoreline evolution modeling is how to define the equilibrium state of the 

shoreline since it is always an evolving quantity. We assume that any quantity can be decomposed into a 

mean and fluctuating contribution. The mean of a given random function f (t) over a given time scale Tc is 

classically defined by: 
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Applying operator (8) to equation (7) yields: 
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Equation (9) is used to determine the equilibrium state of the shoreline orientation. The shoreline reaches 

the equilibrium orientation when the volumetric longshore transport rate does not change along the 

shoreline. In order to obtain from (5) Q , the wave angle αb and shoreline angle β are in turn split into 

means and fluctuations: 

 

b b b    ;                   (10) 

 

Consequently, 

 

b    ; b                    (11) 

5 2 5 2
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The equilibrium shoreline position ( )S x is such that: 
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which implies: 
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For embayed beach which is a closed system with no sediment exchange with the rest of the coastal zone, 

we have: 

 

5 2 5 2
0 sin 2 cos 2 cos 2 sin 2 0Q H H                    (15) 

It is noted that if the wave height is completely uncorrelated with the wave direction, 
5 2

cos 2H   and 

5 2
sin 2H   are zero and thus any value of   is possible in (15). On the contrary, if wave height correlates 

with the propagation direction, the average longshore sediment flux (12) can be written as: 
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The coastline does not change as fast as the forcing condition, it is therefore reasonable to believe that the 

fluctuations of the shoreline angle β’ are small compared to b
  , so from (11): 

 

b                                 (17) 
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Solving equation (15) for  gives: 

     
1

2
bx x x                  (19) 
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The equilibrium shoreline orientation and the average breaking wave propagation direction need to meet 

the condition (19). The value of φ is defined by equation (18) using the wave height and the breaking wave 

angle fluctuation. If the value of 
1

( )
2

x is small (see section 3), ( )x  is approximately ( )b x , the 

average wave direction is thus perpendicular to the shoreline.  

 

2.2.2. Longshore component 

The shoreline evolution derived from longshore drift is expressed by combining equation (5) and equation 

(7): 

 

                 (20) 

 

 

                 (21) 

 

 

                    (22) 

 

 

                 (23) 

 

In which, it is assumed that ( )
b

x ≃ ( )x  with an error of ( )x . The functions A and B are non-

dimensional. The parameters A and B contain derivatives with respect to x. It will be assumed that the 

derivatives of wave parameters with respect to x are constant in time on a given transect. Therefore, a 

model is suggested from equation (20) which reads: 

 

 3 2

, cos 2 sin 2s b b b

dS
H a b

dt
                  (24) 

with a and b non-dimensional parameters to be fitted. 

 

2.3. Combined model 

 

The combined model consists in adding the longshore model (24) to the cross-shore model (1) in place of 

the free parameter d of equation (1). The model can be written as: 

 

                                                                                                                                         (25) 

 
 
The free parameters a, b and c (m

1.5
d

-1
W

-0.5
) play a significant role in the model in regulating the 

magnitude of shoreline change rate. In order to find the free parameter values in the model, a global 

optimization method by the Simulated Annealing was used to minimize the root-mean-square error 

(RMSE) of shoreline changes between measurements and model (Castelle et al., 2014). The R package 

GenSA was used to solve the optimization problem. Model skill indicators are defined in much the same 

way as Splinter et al. (2014). The RMSE is defined by: 
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where Si is the ith measured shoreline position and Smi is the modeled shoreline position at the same date. 

The 1
st
 modeled shoreline position is taken equal to the 1

st
 measured shoreline position (Sm1 = S1). 
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The results can also be evaluated with the NMSE (normalized mean square error), which is defined as 

Splinter et al. (2014): 

 
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                       (27) 

where S  is the mean value of measured shoreline data. If NMSE = 0, the model perfectly captures all data 

points; conversely, if NMSE = 1, the model has no skill. 

 

 

3. Site and data 

 

Narrabeen is located on Sydney's Northern Beaches in southeast Australia. The wave data which includes 

the significant wave height Hs, the peak wave period Tp and the wave direction α was collected from 

January 1979 to October 2014, every 1 h. The monthly shoreline data was collected from April 1976 to 

February 2016. The 8 year time series data from January 2005 to December 2012 which is identical with 

calibration time period of Splinter et al. (2014) was extracted to calibrate our own models. The shoreline 

proxy of elevation z = 0.7 m corresponding to mean high tide water level was used to calibrate the model. 

There are five survey-transects which are identified as PF1, PF2, PF4, PF6 and PF8 (Fig. 2). The wave 

forcing dataset is at 10 m water-depth (h = 10 m) location. The mean grain size is of ϕ = 2 (d50 = 0.4 mm) 

along the entire beach (Splinter et al., 2014). 

 

 
 

Figure 2. Aerial image of Narrabeen beach. Each transect end is pin-pointed. 

 

The average values of the significant wave height Hs and the dimensionless fall velocity Ω at h = 10 m for 

each transect are shown in Tab. 1. It indicates that Hs at PF1 is stronger than the others, Hs at PF8 is 

comparatively smaller. The mean value of Tp is of 9.67 s.  

The wave climate data at breaking point is refracted from wave data at h = 10 m with a breaking significant 

wave height calculated following Komar (1974): 

 

                        (28)  
2 5

1 5

, 100.39s b pH g T H
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and the breaking wave angle αb is calculated using Snell's law as if the bathymetry was 1D. 

The average wave angle at h = 10 m, 10 , is also shown in Tab. 1. The average value of the wave 

orientation decreases counterclockwise from the North to the South of the beach, in line with the shoreline 

orientation. 

 

Table 1. Average value and standard deviation of Hs10, Hs,b, Ω10 and α10. 
 

Transect 10sH  (m) 
10sH  (m)  ,s bH  (m)  

,s bH  (m) 
10   

10
    10  (o)  

10  (o)  

PF1 1.15 0.50 1.58 0.33 2.56 1.05 25.61 15.57 

PF2 0.98 0.42 1.48 0.31 2.19 0.91 21.49 10.89 

PF4 1.06 0.48 1.52 0.33 2.35 1.00 11.70 12.33 

PF6 0.94 0.45 1.45 0.32 2.10 0.99 5.04 11.47 

PF8 0.77 0.37 1.33 0.28 1.76 0.91 -3.01 10.39 

 

 

4. Results 

 

4.1. Cross-shore model 

 

Before working on the combined model, we re-implemented the STDBCO14 cross-shore model using 

Narrabeen beach data. The STDBCO14 cross-shore model was calibrated with both the wave forcing data 

at h = 10 m and at breaking point while Splinter et al. (2014) used wave climates at breaking point obtained 

from numerically refracting waves from 15 m water-depth location to the breaking point. The average 

value and the standard deviation of Hs10 and Hs,b for each transect are presented in Tab. 1. It shows that the 

average value of Hs,b is larger than that of Hs10 but the standard deviation of Hs,b is smaller than that of Hs10. 

It means that the data variability of Hs,b is weaker than that of Hs10. This is due to the predictor (28) in 

which the power 2/5 causes the Hs10 variability to be diminished. 

As a consequence, the standard deviation of the modeled shoreline position with wave forcing at breaking 

point 
,Hs bS is smaller than that with wave forcing at h = 10 m (Tab. 2). The variability of SHs,b  is thus 

weaker than SHs10. The cross-shore model results with wave forcing at h = 10 m match more closely those 

of Splinter et al. (2014) than with breaking wave forcing. The suggested combined model described below 

was thus calibrated with the wave forcing for cross-shore terms at h = 10 m and wave forcing for longshore 

terms at the breaking point using (28). 

 
Table 2. Standard deviation of detrended values of Sdata, SHs,b and SHs10. 

 

Transect dataS (m) 
,Hs bS (m) 

10HsS (m) 

PF1 9.95 1.39 3.00 

PF2 7.72 3.54 4.47 

PF4 9.60 3.13 5.35 

PF6 8.36 3.47 4.90 

PF8 7.23 4.96 6.35 

 

4.2. Combined model 

 

The values of tan φ and φ in Tab. 3 are calculated with equation (18). It is noticeable that φ is quite small. 

Accordingly, the average shoreline angle approximates the average breaking wave angle as stated by the 

equilibrium condition (19). Tab. 3 also shows the measured values of b and 10 , the computed values 

of b and 10 with (19) and the measured shoreline angle βm. The shoreline angle βm for each transect 

was measured by using Google Earth images and it is consistent with data of Turner et al. (2016). It is 
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realized that 10 is a closer guess to βm than b  and therefore that with the available data βm and 
10

  are 

related in a more satisfactory way by equation (19). The value of 
10

 will thus be used to calculate the wave 

angle fluctuation in equation (25).  

Fig. 3 shows results of calibrated parameters from the combined model in comparison with those of 

Splinter et al. (2014). The values of ϕ are chosen to get the smallest RMSE and r is calculated following 

equation (4). Fig. 3 indicates that the differences between our calibrated parameters at several transects and 

those of Splinter et al. (2014) stem from the differences in the input time series data. 

Fig. 4, Fig. 5, Fig. 6, Fig. 7 and Fig. 8 show the STDBCO14 cross-shore model (1) outputs and the 

combined model (25) outputs. The NMSE and smallest RMSE of each transect was presented in Tab. 4.  

The longshore and cross-shore contributions to the combined model are separately analyzed and shown in 

Fig. 4, Fig. 5, Fig. 6, Fig. 7 and Fig. 8. Tab. 5 shows results of free parameters a and b of longshore 

component in the combined model. 

 

Table 3. Values of φ,      ,       ,      ,       and βm (see Fig. 1 for more about angle measurement). 

 

Transect tan φ (18) φ (o) b
 (o) 

10
 (o) 

b
 (o) (19) 

10
 (o) (19) βm (o) 

PF1 0.045 2.60 11.28 25.61 12.58 26.91 27 

PF2 0.026 1.48 9.40 21.49 10.14 22.23 20 

PF4 0.003 0.17 4.98 11.70 5.07 11.79 14 

PF6 -0.011 -0.63 1.79 5.04 1.48 4.73 -5 

PF8 -0.030 -1.71 -1.77 -3.01 -2.63 -3.87 -31 

 

Table 4. RMSE and NMSE of the STDBCO14 cross-shore model and the combined model. 

 

Transect Cross-shore model Combined model % difference 

RMSE (m) NMSE RMSE (m) NMSE RMSE (m) NMSE 

PF1 8.43 0.72 7.52 0.57 11 23 

PF2 6.63 0.62 6.41 0.58 3 7 

PF4 8.03 0.63 7.84 0.6 2 5 

PF6 6.65 0.4 5.14 0.24 26 50 

PF8 5.92 0.42 5.55 0.37 6 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Comparison with results of Splinter et al. (2014). Top left panel: the 'memory decay' ϕ (days). Top right 

panel: the erosion ratio r. Bottom panel: the optimized free parameter c (10-7m1.5s-1W-0.5). 
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Figure 4: Time series of measured shoreline positions at PF1 (circles). Time series model shoreline positions at PF1 

(solid line): (a) STDBCO14 cross-shore model. (b) combined model. (c) longshore contribution to the combined 

model. (d) cross-shore contribution to the combined model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Time series of measured shoreline positions at PF2 (circles). Time series model shoreline positions at PF2 

(solid line): (a) STDBCO14 cross-shore model. (b) combined model. (c) longshore contribution to the combined 

model. (d) cross-shore contribution to the combined model. 
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Figure 6: Time series of measured shoreline positions at PF4 (circles). Time series model shoreline positions at PF4 

(solid line): (a) STDBCO14 cross-shore model. (b) combined model. (c) longshore contribution to the combined 

model. (d) cross-shore contribution to the combined model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Time series of measured shoreline positions at PF6 (circles). Time series model shoreline positions at PF6 

(solid line): (a) STDBCO14 cross-shore model. (b) combined model. (c) longshore contribution to the combined 

model. (d) cross-shore contribution to the combined model. 
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Figure 8: Time series of measured shoreline positions at PF8 (circles). Time series model shoreline positions at PF8 

(solid line): (a) STDBCO14 cross-shore model. (b) combined model. (c) longshore contribution to the combined 

model. (d) cross-shore contribution to the combined model. 

 

                                  Table 5: Free non-dimensional parameters a and b of the longshore model. 
 

Transect PF1 PF2 PF4 PF6 PF8 

a -0.0248 -0.0086 -0.004 0.007 0.0044 

b 0.2176 0.1482 0.0947 -0.2999 -0.0674 

 

 

5. Discussion and conclusion 

 

Regarding the longshore contribution, it is undeniable that the longshore component provides the right 

trend of shoreline evolution on the calibration time range. This indicates that the d free parameter in 

equation (1) can be advantageously replaced by the longshore model. During this same time period, the 

beach is in an overall erosion tendency at PF1 and PF2 while at PF6 and PF8, the beach is accreting. The 

erosion at PF1 on the period is of the order of 20m. In addition, the longshore model gives a slight eroding 

trend at PF4 (approximately 10m) which indicates this transect is close to the pivotal point of the embayed 

beach. At PF1 and PF6, the longshore component not only gives the right long-term trend, but also 

contributes the seasonal shoreline changes. This finding indicates that part of the seasonal shoreline 

position fluctuations are also due to longshore transport. Moreover, it can be concluded that the longshore 

transport has a strong effect on PF1 and PF6 and that is why the longshore component contributes 

considerably more to the combined model at these two transects, and consequently provides smaller 

RMSEs in comparison with the other transects (Tab. 4). Despite having smaller RMSE, the shoreline 

calibration of the combined model is still not entirely satisfactory at PF1 (Fig. 3). It may be due to the 

location of PF1 close to a headland and in front of a shoal. This points at the need of a better estimation of 

the breaking wave characteristics by a method taking into account both the refraction and the diffraction of 

waves. While almost all transects have identical NMSEs with those of Splinter et al. (2014), PF6 has an 

obviously smaller NMSE (Tab. 4). It means PF6 is sensitive to the wave direction and longshore transport. 
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It should be stressed that a certain improvement of the skill of the model could be gained by offsetting the S 

computed values to minimize the RMSE, an option not taken here. 

At all locations, the model produces variability in shoreline position which is far from that of the data 

which was also the case in Splinter et al. (2014). This cannot be improved by using the breaking significant 

wave height Hs,b obtained from equation (28) since it has a smaller variability than that of Hs10. Therefore, 

once again, Hs10 was used for cross-shore component calibration instead of Hs,b.  

It is noticeable that the equilibrium shoreline orientation for the longshore component as stated by equation 

(19) is expressed in terms of shoreline angle β and the breaking wave angle αb. However, in this study, 

because the relation by equation (19) between β and αb is unsatisfactory, we used the wave angle at h = 10 

m for longshore component calibration. Here again we feel that improvements in breaking wave 

characteristics are required.  

To conclude, the assumption of an equilibrium shoreline orientation related to longshore sediment transport 

was shown to be physically sound even though improvements in the breaking wave characteristics are 

required. The suggested longshore contribution to shoreline positions is completely able to describe the 

long-term trends of that position. Our new model which is a combination of a cross-shore model and 

longshore one gives an overall improvement, with smaller NMSE and RMSE, over a “pure” cross-shore 

model. 
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