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Abstract 
 
This paper makes use of the complete, solution for transient, long waves forced by short-wave groups at constant depth 
to provide an intuitive understanding of several features of the behavior of real surf-beat on real beaches namely that: 

1. The long waves are generally not in exact counter-phase with the short-wave envelopes as in the steady 
solution by Longuet-Higgins & Stewart (1962), hereafter L-H&S. Rather, the bottom of the long-wave 
trough is delayed relative to the short-wave envelope peak. 

2. The long wave generated by a single shortwave pulse consists of a leading positive surge as well as the  
        L-H&S depression. 
3. Long waves of higher frequency are observed to ‘shoal’ faster than lower frequency ones. 

Transient behavior of surf-beat and other forced long waves is complicated by the fact that growth from a given shape 
cannot generally happen by simple up-scaling of the pre-existing shape.  For example, simple up-scaling of the L-H&S 
depression under a single wave pulse would violate conservation of volume. The extra water needs to be put 
somewhere within a finite distance.  The complete, transient solution to the linear, constant depth problem shows how 
this is achieved.  The qualitative process is adaptable to shoaling scenarios. 
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1. Introduction 
It has been understood since the early 1960s that, waves exert radiation stress or wave thrust, proportional 
to the wave height squared (Sxx~H2), which drives inshore phenomena like wave setup and long-shore 
currents.  In deeper water, the effect of variable Sxx is analogous to the effect of a variable air pressure on 
the surface. Thus, Sxx~H2 drives water from areas with big waves towards areas with smaller waves, 
forming long waves, which are coherent with the wave groups and follows them in the steady state. 
 The long wave surface elevation  ηL(x,t)  must, at constant depth h, satisfy 

  
∂2ηL

∂t2 − gh
∂2ηL

∂x2 = 1

ρ
∂2Sxx

∂x2
             (1)  

where g is the acceleration due to gravity an  ρ  is the density of water. 
 This equation has steady solutions corresponding to steady wave groups with radiation stress of 
the form  
  Sxx(x,t) =  S0 f(x-cgt) (2) 
  ie, with general magnitude S0, and travelling with constant shape given by the function f  at the group 
velocity cg.  The steady solution is, as per L-H&S:  
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Figure 1: 
The L-H&S solution (3) for a single wave pulse is a 
depression centred under the forcing envelope. 
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 Here the subscript B indicates that this is a Bound wave, which travels with the short-wave 
group and it has the shape of the (inverted) short-wave envelope (~ -S0f ). 
 This solution has been widely used to interpret observations of long waves associated with short-
wave groups even when the assumptions behind this solution are not fulfilled, eg, in case of one or more of 
the following 

1. The depth is not constant 
2. The shortwave envelope changes shape due to dispersion 
3. A steady state has not yet been reached 

 The following describes and explains the ensuing discrepancies, which can be understood, at 
least qualitatively, through the complete, linear solution for constant depth. 
 
 
2. The complete solution for forced long waves at constant depth 
The complete solution includes forward and backward free waves as well as the bound wave given by (3).  
Ie, the complete solution has the form 

  
  
ηL(x,t) = η

B
(x − c

g
t) + η

free
forward(x − gh t) + η

free
backward(x + gh t)  (4) 

of which the steady solution (3) is the first term on the right. 
 Because the bound and free waves propagate with different speeds, the complete picture evolves 
in in a fairly complicated-looking fashion, although it is a simple superposition of three waves.  Several 
examples were discussed in detail by Nielsen et al (2008) and Nielsen (2009), Section 1.3.3.4. 
 Those studies were prompted by an alert student asking: ”So, L-H&S and others give steady 
state solutions for various types of forced long waves, storm surges, surf-beat tsunami and.. . But, how do 
we get from an initially flat ocean at rest to this fully developed steady state?”   
 For the scenario where the forcing, e g (2) is switched on at time zero and then remains steady, 
the development is as follows: 
 The initially flat ocean corresponds to the three waves cancelling each other: 

  
  
ηL = η

B
+ η

free
forward + η

free
backward ≡ 0 at t = 0 (5) 

This condition can be satisfied if the free waves have the same shape, f, as the forcing.  The relative 
magnitudes of the forward and backward free waves are found by considering overall momentum.  For the 
case of starting with an initially quiescent ocean and correspondingly zero overall momentum one finds 

   

  

(afree
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aB

2
[1+
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2
[1−

cg

gh
]









  (6) 

 The steady state is achieved, when the free waves have separated completely from the bound 

wave due to their different speed:  cg < gh .   The backward free wave leaves the scene quickly because 

of its greater relative speed − gh − cg versus gh − cg .  After that the process in Figure 2 plays out. 

 
 
 
 
 
Figure 2: 

The sum: 
  ηB(x,t) +ηfree

forward(x,t) , thin lines, at 

different stages after the switch-on of the 
forcing (×). 

Eventually 
  ηfree

forward(x,t)  disappears out of the 

picture towards the right and the steady state 
represented by (3) alone is reached as in Figure 
1. 
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 The scenario in Figure 2 has been realised by Baldock (pers com 2016) in the laboratory. He 
generated a single short-wave pulse and observed that, as the pulse propagated down the flume, the 
depression and the positive surge in front developed.  This corresponds to the simple observation that, 
when a wave maker starts doing simple harmonic motion in a flume with water at rest, an observer at the 

‘beach end’ will initially see the waterline move up quasi-steadily.  This is due to 
 ηfree

forward arriving at the 

beach ahead of the short-wave train. 
   
 
2.1  What happens at resonance?  
The special behaviour at resonance is important because, surf-beat on a sloping beach, although not quite 
resonant, behaves much like the resonant, constant depth solution, which we shall therefore now develop. 

 The steady solution (3) blows up for cg → gh   so, there is no steady solution for cg = gh . 

What happens then is that, the bound wave and the forward free wave, who now have the same speed, 

merge into a wave of the form  t × ′f (x − ght ),  ie, growing linearly with time and in the shape of the 

derivative of the forcing shape.  This is analogous to the well known resonant solution for the displacement 
of a mass on a spring forced by  F0 sinω0t.  It grows as  t cos ω0 t, where the cos-function is the derivative 
of the sin-function.  For surf beat the derivation goes as follows: 
 We note that the backward free wave vanishes at resonance according to (6). Then, using the 
linear wave theory expression for the group velocity:   
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2
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0
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


   (7) 

where  k0 = 4π2/gT2
   is the deep water wave number, one finds, in the scenario where the forcing starts and 

both of ηB  and ηfree
forward are created at t=0: 
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 (8) 

 
 For example, this means that a single wave pulse with say a Gaussian–shaped envelope, which 
generates a Gaussian-shaped depression in the steady state, will at resonance generate an И-wave.  The 
quasi sinusoidal long waves under bi-cromatic wave groups will be shifted a quarter of a long-wave wave 
length at resonance corresponding to a phase shift of π/2 for harmonic components of the long wave. 
  

 

 

 

Figure 3: 

At resonance, gc gh= , which happens 

in the shallow water limit, the Gaussian 
shaped  Sxx forcing − × −  from the wave 
pulse generates an И-shaped long wave, 
which grows linearly with time. 
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3. Long wave development on a slope 
For a short-wave pulse, which propagates up a slope the forcing  Sxx(x,t)  increases in strength 
due to short-wave shoaling and the response strengthens as the denominator in (3) becomes 
smaller.  This process corresponds, in the language of the transient solution (4), to the bound 
wave growing deeper, while successive incremental forward free waves are generated, to 

accommodate the extra volume, and propagate ahead with relative speed gh − cg .  As this 

relative velocity becomes smaller in shallower and shallower water, in accordance with (7), the 
free wave does not get away, and the shape of the complete solution approaches the qualitative 
form of the resonant constant-depth solution in Figure 3. 
 This has been borne out by the detailed laboratory measurements and RANS numerical 
calculations of Lara et al (2011).  
 

 
 

Figure 5:  Long wave incremented by ∆ηL  due to depth decrease ∆h.  The forward moving free wave has 

advanced  ( gh − cg)δ t  relative to the short-wave group and the pre-existing long wave.  The increment 

∆ηL is exaggerated compared to the pre-existing long wave for illustrative purposes.  Importantly, we note 
that the incremental long wave is volume neutral as required. 

 
 
 In terms of the complete linear constant-depth solution (4) the incremental long wave 
consists of a negative, incremental bound wave and an initially cancelling, incremental forward 
free wave and can be approximated as follows:  

   

  

∆ηL ≈ ∆ηB + ∆η
free

forward = ∆aB f(x − cgδ t ) − 1

2
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gh
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


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k0h

2
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k0h
2

δ t ′f

  (9)  

and with  δ t = ∆h

β gh
 

  

  
∆η

L
= ∆η

B

k0h

2

∆h

β
′f  (10) 

 While the pressure gradients associated with the radiation stress of the short waves do no work 
on the steady, pre-existing long wave, they can do work on the incrememt ∆ηL as discussed in section 5. 
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4. L-H&S do not conserve mass in a shoaling situation 
Perhaps the most obvious indication that more than the steady L-H&S solution is needed in relation to 

coastal processes is that this steady solution will not conserve mass, if applied in a quasi-steady fashion to a 

shoaling scenario.  
 This point, is easily overlooked when only periodic, bicromatic wave groups are considered, 
because, they generate sinuous long waves, where mass can be balanced between neighbouring positive 
and negative parts.  Short, isolated wave groups, on the other hand, as studied by Watson et al (1994) and 
later by Baldock (2006) bring this point out nicely. That is, for a single, isolated wave pulse the steady 
solution is a single depression as per Figure 1.  If the same wave group is transferred to a shallower depth,  
the steady solution (3) says that the depression must be deeper because the denominator  gh-cg

2  gets 
smaller.  However, there is nowhere to put the excess water.  Accommodating it in the constant in (3) is not 
a physical option because, this would involve redistributing water all the way out to +/- infinity in a finite 

time.  Water can at most travel at speed gh . 

 The complete solution on the other hand enables conservation of mass during a quasi-steady 
shoaling process as illustrated in Figure 5. 
 

 
Figure 5: 
Left: Short wave pulse with Sxx(x,t)  indicated by (×××) and the associated steady, forced long wave with 
the same shape (inverted) in accordance with (3). 
Right: Same pulse, somehow progressed to a shallower depth.  The expression (3) has now deepened in 
accordance to L-H&S’s  h-5/2 law (- - -).  To accommodate the extra water a positive, forward-moving, free 
wave has formed (••••).  The total long wave given by (4) (___) now has a leading positive part as well as a 
negative part, now not quite centred under Sxx(x,t) , but lagging. 
 
5   Long wave growth requires a lag, which is absent in the L-H&S solution 
The right-hand part of Figure 5, now offers insight into how the short-wave radiation stress gradient can do 
work on the long wave: That is, the complete long wave (__  ) is now lagging Sxx(x,t), which corresponds 
to a phase-lag of harmonic components as observed by Elgar et al (1992) and Janssen et al (2003). 
 The radiation stress gradients do work on the long wave via the long wave velocities  UL, as per 
 

   (11) 

 
which, under steady (constant depth) conditions, with  ηL  given by (3) is zero as per 
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∂Sxx

∂x

cg

h
ηL dx∫ = S0 ′f (x - cgt)

cg

h
−S0 / ρ
gh− cg

2 f(x - cgt)∫ dx ∝ f(x - cgt) ′f (x - cgt)∫ dx

∝ f 2(x - cgt) start

end

 (12) 

 
which vanishes whenever Sxx has the same value at the start and at the end of the group. 
 However, in the scenario on the right of Figure 5, the long wave  ηL= ηB,left+∆ηB+ηfree  has the 
form  

  ηL = − (aB,left + ∆aB)f(x − cgt) + aforward
free f(x − ght ) + ...  (13) 

 
where the sum of the incremental bound wave and the forward free wave is of the form 

∆ηL = ∆aB( gh − cg)δ t ′f (x − cgt ) ,  corresponding to both having the shape f( ), with opposite sign and 

having moved the distance ( gh − cg)δ t  apart, as per the derivation (9).  This gives rise to a non-zero work 

contribution namely: 
 

   (14) 

 
 That is, the fact that the incremental long wave is composed of a bound part in the shape of 
f(x − cgt)  

and an (almost, since we neglect the backward free wave) equal and opposite forward free wave 

f(x − ght) , which combine to something of the form ′f (x − cgt)  explains the energy transfer to the long 

wave in the shoaling process qualitatively. 
 In terms of the curves in Figure 5, what has happened is that, the main part of the long wave, the 
depression, has been shifted backwards corresponding to the harmonic components having developed 
phase-shifts as noted by Elgar et al (1992) and Janssen et al (2003).  This phase shift is necessary for 
transfer of energy from the short waves to the long wave. – Necessary for long wave growth. 
 Janssen et al (2003) stress the necessity for the phase-shifts to enable energy transfer and 
ensuing long-wave growth and develop a model for this phase-shift. However, their model development is 
somewhat obscure because they do not make explicit use of the free waves, which create the phase shifts as 
in Figure 5, in their description.  
 
 
6.  The time scale for surf-beat development 
Longuet-Higgins & Stewart (1962) derived the quasi steady shoaling rate  ηB(h) ~ h-5/2,  corresponding to 
taking the steady solution (3) to a shallower depth, while the short-waves shoaled according to green’s law, 
i e, as h-1/4.  While LH&S did not talk about the growth process involving the free waves, which need time 
to move out of the way as described above, they did caution that the h-5/2, growth rate would only be 
observed “given enough time”.  From the process described above and partly depicted in Figure 2, it is 
clear that the time scale for surf-beat development, ie, for the free waves moving out of the picture, is 
 

   
LL

gh − cg

≈ LL

gh − gh[1− 1
2

k0h+ ..]
= 2LL

gh k0h
= LL g1/2T 2

2π 2h3/2  (15) 

 
where LL denotes the length of the long wave, same as the length of the short-wave group.  
 
 
7.  The shoaling rate is usually fastest for the higher-frequency long waves 
The growth time-scale above corresponds to the ‘shoaling rate’ which was commented on by Elgar et al 
(1992) on the basis of the amplification of long-wave components travelling from  h=13m  to  h=8m.  They 
concluded on the basis of the data in Figure 6:  “The amplification is usually largest at the high frequency 
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end of the infragravity band”   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: 
Amplification rates for various wave 
bands going from h=13m to h=8m. 
Adapted from Elgar et al (1992). 
The longest components (f<0.02Hz) 
do not have time to develop fully, 
while the shortest ‘infragravity 
components’,  f ≈ 0.05Hz   reach 
nearly full development 
corresponding to  h-5/2.  Waves at 
0.075Hz and above shoal according 
to Green’s Law, ie, h-1/4. 
 
 
 

  
 This corresponds to the fact that the resonant growth rate corresponding to (8) is proportional to 
the derivative of the shape function of the short-wave group. 
 
 
8.  Conclusions 
The fact that, surf-beat usually travel through varying depths and therefore are not in a steady state, means 
that the details of their behavior cannot be understood simply through the steady solution of Longuet-
Higgins & Stewart (1962).  Analytical solutions, which account for the bed slope, are either restricted to 
bicromatic short-wave scenarios (Schaffer 1992) or become so complicated that the central, qualitative 
characteristic of the long-wave increments due to a depth change gets clouded for most readers  (Janssen et 



Coastal Dynamics 2017 
Paper No. 198 

450 
 

al 2003) .   
 The central characteristic is that in general, and very obviously for a single wave pulse, 
continuity requires that the long-wave increment ∆η∆η∆η∆ηL must represent zero net volume, ie, it cannot be 
simply a bowl-shaped increment to a pre-existing bowl.  The complete solution to the transient problem 
over a horizontal bed shows how this can be handled. In this solution, every increment in the bound-wave 

solution ∆η∆η∆η∆ηB,  is created together with a pair of co-located, free waves  ηfree
forward and ηfree

backward so that, the 

co-located total gives no initial surface elevations and no extra energy or momentum.  Subsequently, new 
surface elevations develop as the bound and free waves separate due to their different celerities 

( ± gh versuscg ) and the total long-wave energy and momentum grows, as long as there is some 

overlap enabling energy transfer from the short-wave radiation stresses through non-linear terms of the 

form 
∂Sxx

∂x
UL .  Laboratory experiments and numerical simulations, e g Lara et al (2011) show that the 

process of long-wave growth on a slope is qualitatively very similar to this process. 

 The fact that the development of long-wave amplitude is associated with  ηfree
forward and ∆η∆η∆η∆ηB 

separating due to the celerity difference  gh − cg  explains that the time-scale for Long-wave amplitude 

growth is 
LL

gh − cg

 where LL is the length of the long wave.  Or, in terms of periods   

  growth time scale=
LL

gh − cg

=
TL gh

gh − cg

=
TL

1
2

k0sh+ ....
≈

2TL

k0sh
   (16) 

ie, the growth time scale is longer for longer surf-beats, or in other words, shorter surf-beats shoal faster 
than long ones. Hence, in the surf-beat shoaling scenario observed by Elgar et al (1992) the longest surf 
beats (0.02Hz<f<0.03Hz) did not have enough time to grow fully corresponding to the h-5/2 depth 
dependence of (3) when travelling between their 13m and 8m stations.  The shorter surf-beats (f~0.05Hz) 
on the other hand got much closer to complete development along the same path. 
 Alternatively, the faster growth of shorter surf-beats can be seen as resulting from the presence 
of the x-derivative of the forcing shape, f’, in the resonant and near-resonant solutions (8) and (9).  This 
derivative is twice as big for half-length surf-beats all other things equal. 
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