Coastal Dynamics 2017
Paper No. 198

SURF BEAT ‘SHOALING’

Peter Nielseh

Abstract

This paper makes use of the complete, solutiotrémsient, long waves forced by short-wave grougoastant depth
to provide an intuitive understanding of severaldees of the behavior of real surf-beat on reathes namely that:

1. The long waves are generally not in exact counbasp with the short-wave envelopes as in the steady
solution by Longuet-Higgins & Stewart (1962), hdreaL-H&S. Rather, the bottom of the long-wave
trough is delayed relative to the short-wave enwelpeak.

2. The long wave generated by a single shortwave malssists of a leading positive surge as well as th
L-H&S depression.

3. Long waves of higher frequency are observed todklfaster than lower frequency ones.

Transient behavior of surf-beat and other forcedjlwaves is complicated by the fact that growtimfim given shape
cannot generally happen by simple up-scaling oftieeexisting shape. For example, simple up-sgalirthe L-H&S
depression under a single wave pulse would viotateservation of volume. The extra water needs topbie
somewhere within a finite distance. The complemsient solution to the linear, constant deptibfgm shows how
this is achieved. The qualitative process is adptto shoaling scenarios.
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1. Introduction
It has been understood since the early 1960swates exert radiation stress or wave thrust, ptapal
to the wave height square@,~H?), which drives inshore phenomena like wave setug lang-shore
currents. In deeper water, the effect of variggleis analogous to the effect of a variable air pres®n
the surface. ThusS,~H? drives water from areas with big waves towardsasreith smaller waves,
forming long waves, which are coherent with the evgrvoups and follows them in the steady state.
The long wave surface elevatiop (x,t) must, at constant depih satisfy
a2,7L _ haan - 1023«
ot? x> p ax
whereg is the acceleration due to gravity anis the density of water.
This equation has steady solutions correspondirgieady wave groups with radiation stress of
the form

1)

Su(x,) = Sf(x-cqt) (2)
ie, with general magnitud&, and travelling with constant shape given by tiecfion f at the group
velocitycy. The steady solution is, as per L-H&S:
-S / pgh
_ A2

ng(x.t) = af(x-ct) = o

f(x-ct) + Constant (3)
9

Figure 1
The L-H&S solution (3) for a single wave pulse is a
depression centred under the forcing envelope.
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Here the subscript B indicates that this is a Bowave, which travels with the short-wave
group and it has the shape of the (inverted) shaxte envelope (~&f).
This solution has been widely used to interpreseotations of long waves associated with short-
wave groups even when the assumptions behinddhisan are not fulfilled, eg, in case of one ormnof
the following
1. The depth is not constant
2. The shortwave envelope changes shape due to d@pers
3. Asteady state has not yet been reached
The following describes and explains the ensuiisgrdpancies, which can be understood, at
least qualitatively, through the complete, linealuson for constant depth.

2. The complete solution for forced long waves at cotant depth
The complete solution includes forward and backwesd waves as well as the bound wave given by (3).
le, the complete solution has the form

7060) = 7, (x=c) + 7 (x=[ght) + 72 (x+ ght) (@)
of which the steady solution (3) is the first tesmthe right.

Because the bound and free waves propagate \fénedit speeds, the complete picture evolves
in in a fairly complicated-looking fashion, althdug is a simple superposition of three waves. esalv
examples were discussed in detail by Nielsen €008) and Nielsen (2009), Section 1.3.3.4.

Those studies were prompted by an alert studddmgis’So, L-H&S and others give steady
state solutions for various types of forced long@sm storm surges, surf-beat tsunami and.. . Ruwt, do
we get from an initially flat ocean at rest to thily developed steady state?”

For the scenario where the forcing, e g (2) igdwad on at time zero and then remains steady,
the development is as follows:

The initially flat ocean corresponds to the thnesres cancelling each other:

= Mg i " =0 att=0 ®)

This condition can be satisfied if the free wavesenthe same shape, f, as the forcing. The relativ
magnitudes of the forward and backward free wavesaund by considering overall momentum. For the
case of starting with an initially quiescent ocead correspondingly zero overall momentum one finds

(a'forward’ a'backward) - (_i[l_i_ Cg ]’ _i[l_ Cg ]\ (6)
ree ree L 2 \/& 2 \/E J

The steady state is achieved, when the free whaes separated completely from the bound
wave due to their different speed;;, < v/gh. The backward free wave leaves the scene quidpause

of its greater relative speed-+/gh — C, versus \/gh -G After that the process in Figure 2 plays out.

Figure 2:

forward

The sum:/7,(X,t) + 77,2 (X,t), thin lines, at

different stages after the switch-on of the
forcing (x).
forward

Eventually 77" (X,t) disappears out of the

picture towards the right and the steady state
represented by (3) alone is reached as in Figure
1.
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The scenario in Figure 2 has been realised bydg&ldpers com 2016) in the laboratory. He
generated a single short-wave pulse and obsenetd dks the pulse propagated down the flume, the
depression and the positive surge in front develop&his corresponds to the simple observation, that
when a wave maker starts doing simple harmonicandti a flume with water at rest, an observer at th

forward

‘beach end’ will initially see the waterline move qguasi-steadily. This is due tg " arriving at the

beach ahead of the short-wave train.

2.1 What happens at resonance?
The special behaviour at resonance is importarausss; surf-beat on a sloping beach, although nité qu
resonant, behaves much like the resonant, corttgth solution, which we shall therefore now depelo

The steady solution (3) blows up f05 - Jgh so, there is no steady solution f©J= \Jah.
What happens then is that, the bound wave andaiveafd free wave, who now have the same speed,
merge into a wave of the fornt x f'(x —4/ght), ie, growing linearly with time and in the shapfethe

derivative of the forcing shape. This is analogmuthe well known resonant solution for the displaent
of a mass on a spring forced By sinayt. It grows ast cosayt, where the cos-function is the derivative
of the sin-function. For surf beat the derivatgies as follows:

We note that the backward free wave vanishessanence according to (6). Then, using the
linear wave theory expression for the group vejocit

1
¢, = @{1—EkOh+O(k0h)2} @)
where ko = 477/gT? is the deep water wave number, one finds, in tkeao where the forcing starts and

forward

both of /7, and /.. are created at0:

ot _ =S,/ poh |
”L(X’t) ,78+,7ffree i - ﬁi)ghkf(x_cgt) - 2

05 G- S° ”g Lf(x @[1—@10 —f(x—@t)}
0BG~ %’pgh(J_k(’ tHx- J_ht)J
t f(x-+ght)

c )
_1f(x—+/ght
@](ng_)J

(8)

:zp@

For example, this means that a single wave pulde say a Gaussian—shaped envelope, which
generates a Gaussian-shaped depression in they Stiediel, will at resonance generatel&wave. The
quasi sinusoidal long waves under bi-cromatic wgnaips will be shifted a quarter of a long-wave wav
length at resonance corresponding to a phaseashif® for harmonic components of the long wave.

Figure 3:
At resonancef, = \/gh, which happens

in the shallow water limit, the Gaussian
shaped S, forcing —x— from the wave

pulse generates aH-shaped long wave,
which grows linearly with time.
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3. Long wave development on a slope

For a short-wave pulse, which propagates up a dlopdorcing Si(x,t) increases in strength
due to short-wave shoaling and the response shengtas the denominator in (3) becomes
smaller. This process corresponds, in the langadgbe transient solution (4), to the bound
wave growing deeper, while successive incrememtaidrd free waves are generated, to

accommodate the extra volume, and propagate ahéhdrelative speed/gh—cg. As this

relative velocity becomes smaller in shallower ahdllower water, in accordance with (7), the
free wave does not get away, and the shape ofaimplete solution approaches the qualitative
form of the resonant constant-depth solution iruFegs.

This has been borne out by the detailed laborat@gsurements and RANS numerical
calculations of Lara et al (2011).

(‘@E “’A)Se
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Figure5: Long wave incremented k47, due to depth decreadg The forward moving free wave has
advanced (y/gh —,)J, relative to the short-wave group and fhie-existing long waveThe increment

An, is exaggerated compared to thie-existing long wavéor illustrative purposes. Importantly, we note
thatthe incremental long wavs volume neutral as required.

In terms of the complete linear constant-depthiteam (4) the incremental long wave
consists of a negative, incremental bound waveamuhitially cancelling, incremental forward
free wave and can be approximated as follows:

AN = An.+ AP = A (f(x—cd) T ]f(x—\/_hd)\
. g ,7,,99 aBL gt 2 @ gno, J
. ( k,h )
B da| fx=oh[1-710) ~ 1(x=oh3) (©)
h
{0~ da, Jon s
A
and with J, = ——=
Sygh
= ap KNy,
An. = An, 5 /S’f (20)

While the pressure gradients associated with ddétion stress of the short waves do no work
on the steady, pre-existing long wave, they cawalik on the incremenm/;_ as discussed in section 5.
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4. L-H&S do not conserve mass in a shoaling situation

Perhaps the most obvious indication that more than the steady L-H&S solution is needed in relation to
coastal processes is that this steady solution will not conserve mass, if applied in a quasi-steady fashion to a
shoaling scenario.

This point, is easily overlooked when only peripdbicromatic wave groups are considered,
because, they generate sinuous long waves, whess cam be balanced between neighbouring positive
and negative parts. Short, isolated wave groupshe other hand, as studied by Watson et al (1864)
later by Baldock (2006) bring this point out niceljhat is, for a single, isolated wave pulse treagy
solution is a single depression as per Figuref thel same wave group is transferred to a shallaeeth,
the steady solution (3) says that the depressiost tneé deeper because the denominatgimccg2 gets
smaller. However, there is nowhere to put the exeeater. Accommodating it in the constant inig3)ot
a physical option because, this would involve reithisting water all the way out to +/- infinity ia finite

time. Water can at most travel at spe\éﬁ.

The complete solution on the other hand enablesaoation of mass during a quasi-steady
shoaling process as illustrated in Figure 5.
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Figure5:

Left: Short wave pulse witB,,(x,t) indicated by %¥xx) and the associated steady, forced long wave with
the same shape (inverted) in accordance with (3).

Right: Same pulse, somehow progressed to a shallow#n.d&he expression (3) has now deepened in
accordance to L-H&S'$*? law (- - -). To accommodate the extra water a positive, dodamoving, free
wave has formeck{¢). The total long wave given by (L2 ) now has a leading positive part as well as a
negative part, now not quite centred unglg¢x.t) , but lagging.

5 Long wave growth requires a lag, which is abséim the L-H&S solution
The right-hand part of Figure 5, now offers insigtib how the short-wave radiation stress gradiamt do
work on the long wave: That is, the complete loray@{__) is now laggingS«(xt), which corresponds
to a phase-lag of harmonic components as observétdigen ¥t al (1992) and Janssen et al (2003).

The radiation stress gradients do work on the lwage via the long wave velocitidd,, as per

” anx anx ¢
E= ja—xUde =[S0 dx (11)

which, under steady (constant depth) conditiont) wj_given by (3) is zero as per
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jas*x gnde = [sf(x- ct) ‘Qﬁ 'Of(x cdx O [H(x-ct)f'(x-cit)dx
(12)

0 [fz(x—cgt)]sm

which vanishes whenev&;, has the same value at the start and at the et gfroup.
However, in the scenario on the right of Figureh® long wave s = /g ext s+ 7ee has the
form

(aB Ieft+AaB)f(X Ct) + a‘freealdf(x \/_t (13)

where the sum of the incremental bound wave and fevard free wave is of the form
An = Aaa(@—cg)dtf'(x—cgt), corresponding to both having the shape f( )hwipposite sign and
having moved the distandg/gh —¢,)0, apart, as per the derivation (9). This gives tosa non-zero work
contribution namely:

E= j x QA Ldx = [Sf(x-c,0) gAaLf’(x e,dx o [ £2(x-c,1)dx > 0 (14)

That is, the fact that the incremental long wasv&dmposed of a bound part in the shape of
f(x-c,t) and an (almost, since we neglect the backwardvieee) equal and opposite forward free wave

f(x—@t), which combine to something of the forft(x - c;t) explains the energy transfer to the long

wave in the shoaling process qualitatively.

In terms of the curves in Figure 5, what has hapgeas that, the main part of the long wave, the
depression, has been shifted backwards corresgprdirthe harmonic components having developed
phase-shifts as noted by Elgar et al (1992) andsg@anet al (2003). This phase shift is necessary f
transfer of energy from the short waves to the lmage. — Necessary for long wave growth.

Janssen et al (2003) stress the necessity fophiase-shifts to enable energy transfer and
ensuing long-wave growth and develop a model fr phase-shift. However, their model development is
somewhat obscure because they do not make exmieiof the free waves, which create the phases ssft
in Figure 5, in their description.

6. The time scale for surf-beat development

Longuet-Higgins & Stewart (1962) derived the quetsiady shoaling rateys(h) ~ , corresponding to
taking the steady solution (3) to a shallower depthile the short-waves shoaled according to geekeny,

i e, ash™. While LH&S did not talk about the growth procéssolving the free waves, which need time
to move out of the way as described above, theycdidtion that then®? growth rate would only be
observed “given enough time”. From the proceszritesd above and partly depicted in Figure 2, it is
clear that the time scale for surf-beat developirienfor the free waves moving out of the pictuse,

h-5/2

L, L, 2L, _ LT

@—C \/_ \/_[1_7 h+. ] @koh - 2772h3/2

(15)

whereL,_ denotes the length of the long wave, same astiggh of the short-wave group.

7. The shoaling rate is usually fastest for the gher-frequency long waves

The growth time-scale above corresponds to thealghp rate’ which was commented on by Elgar et al
(1992) on the basis of the amplification of longweaomponents travelling frorh=13m to h=8m. They
concluded on the basis of the data in Figure Bhe‘amplification is usually largest at the high frequency
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end of the infragravity band”
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Figure 6:

Amplification rates for various wave
bands going fronh=13m toh=8m.
Adapted from Elgar et al (1992).
The longest component&(.02Hz)
do not have time to develop fully,
while the shortest ‘infragravity

.4 components’,f~ 0.05Hz reach
nearly full development
corresponding tch™? Waves at
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This corresponds to the fact that the resonamtiroate corresponding to (8) is proportional to
the derivative of the shape function of the shaatvgroup.

8. Conclusions

The fact that, surf-beat usually travel throughyirsg depths and therefore are not in a steady, staans
that the details of their behavior cannot be uriders simply through the steady solution of Longuet-
Higgins & Stewart (1962). Analytical solutions, ih account for the bed slope, are either resttitte
bicromatic short-wave scenarios (Schaffer 1992p@rome so complicated that the central, qualitative
characteristic of the long-wave increments due degth change gets clouded for most readers @amess
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al 2003) .

The central characteristic is that in general, aedy obviously for a single wave pulse,
continuity requires that the long-wave increméds,. must represent zero net volume, ie, it cannot be
simply a bowl-shaped increment to a pre-existinglboThe complete solution to the transient problem
over a horizontal bed shows how this can be handitethis solution, every increment in the boundvera

solution Args, is created together with a pair of co-locatede fvaves /70> and /77°°“"*“so that, the

co-located total gives no initial surface elevasi@mnd no extra energy or momentum. Subsequemtly, n
surface elevations develop as the bound and freeesvaeparate due to their different celerities

(£ygh versuscg) and the total long-wave energy and momentum gr@sslong as there is some
overlap enabling energy transfer from the shorteveadiation stresses through non-linear terms ef th

0 _ : : :
form %UL. Laboratory experiments and numerical simulatieng Lara et al (2011) show that the
X

process of long-wave growth on a slope is qualiédyi very similar to this process.
forward

The fact that the development of long-wave amgétus associated with/7;,.~ and 4rs

separating due to the celerity diﬁeren@ —G explains that the time-scale for Long-wave amgktu

L
growth is\/—h—L wherel, is the length of the long wave. Or, in terms efipds
gn =G,

growth time scale= \/_lr;L _ Tyon - i (16)
g

~G ) @_Cg %k05h+.... i Koch

ie, the growth time scale is longer for longer swehts, or in other words, shorter surf-beats sfasér
than long ones. Hence, in the surf-beat shoaliegaio observed by Elgar et al (1992) the longest s
beats (0.02Hz<0.03Hz) did not have enough time to grow fully responding to theh™®? depth
dependence of (3) when travelling between their BBich 8m stations. The shorter surf-beats (f~0.05Hz
on the other hand got much closer to complete deveént along the same path.

Alternatively, the faster growth of shorter sudfdbs can be seen as resulting from the presence
of the x-derivative of the forcing shape, f’, in the resohand near-resonant solutions (8) and (9). This
derivative is twice as big for half-length surf-keall other things equal.
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