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Abstract 

 
The stabilisation mechanism in the long-term evolution of crescentic bars is investigated in this study. The model is an 

extended model of the model of Chen et al. (2017), built on linear stability analysis. The present model includes the 

effect of suppression of non-dominant lengthscales in addition to the nonlinear effects considered by Chen et al. (2017). 

With this model, the bathymetric evolution of crescentic bars at Duck (North Carolina, USA) for over 2 months period 

was reproduced. Results show that the suppression of non-dominant modes stabilizes the sea bed profile by sustaining 

the dominance of one morphological pattern and limiting the overall amplitude of the sea bed. The suppression effect 

can also influence the evolution of the dominant lengthscale. The threshold amplitude at which the suppression effect 

occurs selects the dominant lengthscale for the late post-storm stage. This study provides an alternative way in 

predicting the long-term evolution of crescentic systems.  
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1. Introduction 
 

Crescentic bars are a common morphological pattern in the nearshore region. They have been observed 

throughout the world (Van Enckevort et al., 2004). Such nearshore sea bed patterns are important in 

preventing coastal erosion and flooding (Hanley et al., 2014). However, due to the complexity of nearshore 

hydro- and morphodynamic, the mechanisms of long-term evolution of crescentic bar systems remain 

unclear.  

 

Recently, the origin of crescentic bars has been shown in several studies to be due to morphological 

instability (see Ribas et al., 2015), owing to the positive feedback between developing topography and flow. 

Such instability in the sea bed is examined in many studies using linear stability analysis, see e.g. Deigaard 

et al. (1999); Falqués et al. (2000); Damgaard et al. (2002); Calvete et al. (2005); Van Leeuwen et al. 

(2006); Calvete et al. (2007). In this method, a perturbation of small amplitude can be imposed onto an 

equilibrium state. The interaction of flow and this perturbation results in a growth rate for this pattern. The 

pattern with largest growth rate will eventually dominate the sea bed profile. Although linear stability 

analysis has proved to be useful in describing the initialization and short term evolution of crescentic bars 

and identifying underlying physics (Van Enckevort et al. 2004), its performance in long-term prediction of 

crescentic bar evolution turns out to be less good (Tiessen et al., 2010). The limitation is due to the lack of 

nonlinear effects in linear stability analysis. 

  

A few nonlinear effects are suggested to be important in the long-term evolution of crescentic bars by 

Tiessen et al. (2011). With a fully nonlinear numerical model, Tiessen et al. (2011) studied the impact of 

pre-existing bed-patterns and found a connection between the lengthscale of the pre-existing bed pattern 

and newly-arising crescentic bed-forms. A rapid initial development is found on higher harmonics of pre-

existing lengthscale. Based on the work of Tiessen et al. (2011) work, Chen et al. (2017) identified the 

finite amplitude growth (equilibration) and higher harmonic interaction as the leading nonlinear effects in 
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the long-term development of crescentic bars. These effects are added to a linear stability model and used 

to predict crescentic bar evolution along a beach in Duck, North Carolina (USA). The predicted lengthscale 

of the dominant crescentic bar well reproduced the field observations. However, in the late post-storm 

stage, the predicted lengthscale shows some shifting instead of stabilisation on a main lengthscale, and the 

overall sea bed variance is over predicted.   

 

Furthermore, the nonlinear numerical study of Smit et al. (2012) suggests a stable 2D morphology in the 

late post-storm stage. A bed pattern with significant amplitude is likely to remain until being removed by a 

storm, which means in the late post-storm stage the sea bed profile is stable and characterized with a 

dominant bed pattern. This is in agreement with field observations (Van Enckevort et al., 2004). Van 

Enckevort et al. (2004) found both splitting of the longest lengthscales and merging of small lengthscales 

in the late post-storm stage, which indicates a self-organization of crescentic bar system into a more 

uniform spacing and the suppression of non-dominant patterns. Such splitting and merging phenomena are 

also observed in numerical studies (Castelle and Ruessink, 2011).    

 

In this study, we aim to investigate the stabilisation mechanism in the long-term evolution of crescentic 

bars in an idealised scheme, based on the work of Chen et al. (2017) and the conclusion of Smit et al. 

(2012).  

 

To this end, the model of Chen et al. (2017) is extended to incorporate the suppression effect of non-

dominant bed patterns, as suggested by Smit et al. (2012). The model is used to predict the lengthscale of 

the crescentic bed forms for a period of two months in 1998 at Duck (NC, USA). Measured wave 

conditions, tidal data and topography at the same field are used in the study. The model results are 

compared with field observation (Van Enckevort et al., 2004) over the same period. 

 

The methodology used in this study is described in Section 2; Section 3 presents the results. Subsequently, 

the work is discussed in Section 4 and a conclusion is given in the final section. 

 

2. METHODOLOGY  
 

2.1 Model description 
 
The model used here is based on the linear stability model of Calvete et al. (2005) (Morfo60). The 

framework of the model is composed of wave- and depth-averaged shallow water equations, 

complemented by wave energy and phase equations and a bed evolution equation. The model geometry 

describes an open coast of unlimited extent in the longshore direction. The quasi-steady assumption is 

adopted with a spatial coordinate system, (x,y), aligned with cross- and long-shore directions respectively. 

Here, t refers to the morphodynamic time scale. Standard expressions are adopted for wave radiation stress, 

turbulent Reynolds stress, phase speed, group velocity, intrinsic and absolute frequency and wave orbital 

velocity (see Mei, 1989).  Wave energy dissipation due to wave breaking is described according to Church 

and Thornton (1993). The expression of Feddersen et al. (2000) is used to describe the bed sheer stress. 

Sediment transport follows the formulation of Soulsby and Van Rijn (Soulsby, 1997), which is a total load 

formula for combined transport by waves and currents. For full equations please see Calvete et al. (2005).  
 

As in Chen et al. (2017), the initial bed and associated hydrodynamics under a set of forcing conditions 

(wave and water level) are obtained using Morfo60. To study the long-term evolution, non-linear effects 

have to be included. In addition to the equilibration and higher harmonic interaction, as adopted in Chen et 

al. (2017), here the suppression of non-dominant bed patterns is also accounted for.  
 

2.2. Linear stability analysis 
 

The variables of a standard linear stability analysis consist of a time invariant equilibrium state, plus a 

small perturbation to that state. In our study, the equilibrium state (so called basic state) corresponds to the 

prevailing wave condition and water levels throughout the 2 months at Duck (NC, USA). The wave data 

were recorded from August 20, 1998 until October 22, 1998 (Van Enckevort et al., 2004), at three hour 

intervals. So the alongshore-averaged topography was interpolated from the measurement (recorded 
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monthly) for all cross shore locations at the same frequency. The reproduced topography also incorporated 

tidal variation by shifting the water depth vertically. For complete information of wave conditions and 

water depths, please see Chen et al. (2017).  
 

Once the basic state is obtained, a small perturbation is introduced onto the equilibrium state and the model 

equations are linearized with respect to that perturbation.  

 

ℎ′ = 𝑅𝑒{ℎ(𝑥)𝑒𝜔𝑡+𝑖𝑘𝑦}. (1) 

 

Here, ℎ′  represents the bed perturbation and ℎ(𝑥)  is its cross-shore profile, with arbitrary wavelength 

𝜆 = 2𝜋 𝑘⁄ , and (complex) frequency 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 . Thus the real part of the frequency 𝜔𝑟 represents the 

growth rate of the periodic pattern, while the imaginary part 𝑐𝑚 = 𝜔𝑖 𝑘⁄  represents the corresponding 

migration rate. A pattern with positive (negative) 𝜔𝑟 indicates a growing (decaying) pattern. For a chosen k 

the cross-shore structure of the perturbation (ℎ(𝑥)) and its frequency (𝜔) are obtained using Morfo60 

(Calvete et al. 2005).  

 

2.3. Growth rate curve 
 

The morphodynamic lengthscales observed in the field ranged from k=0.001 rad m
−1 

to k=0.1 rad m
−1 

. We 

therefore calculated growth rate of these lengthscales in this range for  increments ∆𝑘 = 0.001 rad m
−1

, 

corresponding to 𝜆 values of {6.3km, 3.1km, 2.1km, 1.6km, 1.3km . . . 65.4m, 64.8m, 64.1m, 63.5m, 

62.8m}, for each set of forcing conditions (every three hours, see section 2.2). To describe the amplitude 

development of all lengthscales, a unique growth rate (so-called physical growth rate) for each k is 

calculated for each three-hour prediction. The identification of an entire physical growth rate curve (in k 

space) is explained in Chen et al. (2017). An example of physical growth rate curve generated based on the 

condition on 20 August is shown in figure 1a.  

 

The determination of the linear growth rate curve is done every three hours, based on the updated 

hydrodynamic forcing conditions and bathymetry. The variation of these growth rate curves over time is 

significant (see figure 1b) due to changes in wave forcing and tidal fluctuations. 
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Figure 1. (a) Growth rate curve on August 20, 1998,  with small black dots for all solutions from Morfo60, red dots for 

all physical modes and black encircled red dots for selected physical mode, covering k-value ranges from 0.001 to 0.1 

rad m-1; (b) the growth rate curve at each time step (every three hours) as derived by selecting the most likely physical 

mode. Blue color indicates negative growth rate and yellow color indicates positive growth rate, and the black dashed 

line indicates the time of the peak of a storm. 

 
2.4. Amplitude development 
 

In linear stability theory, the amplitude of the perturbation follows an exponentially growing or decaying 
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evolution, which will violate the assumption of small perturbation after certain time of evolution. To study 

the long-term evolution, we thus need to incorporate non-linear effects. In this study, apart from non-linear 

effects adopted in Chen et al. (2017), i.e. equilibration and higher harmonic interactions, we also consider 

the suppression of all other modes when one pattern reaches a threshold of dominance. These effects are 

included in the amplitude equation below.  
 

𝑑𝐴𝜆
𝑑𝑡

= 𝜔𝑟𝜆(𝑡𝑛)𝐴𝜆⏟      
𝐼

−𝑙𝜆(𝑡𝑛)𝐴𝜆
3

⏟      
𝐼𝐼

+𝑚2𝜆𝐴2𝜆
2

⏟    
𝐼𝐼𝐼

−𝑛𝜆 (0.5 + 0.5𝑡𝑎𝑛ℎ (30(𝐴𝜆𝑑 − 𝐴𝑠𝑢𝑝𝑝)))⏟                          
𝐼𝑉

, (2) 

 

with 

𝐴𝑚𝑖𝑛 = 0.1, 𝐴𝑚𝑎𝑥 = 1, 𝐴𝑠𝑢𝑝𝑝 = 0.9, 𝑙𝜆(𝑡𝑛) = |𝜔𝜆|(𝑡𝑛),𝑚2𝜆 = 𝛼(1 − 𝐴𝜆
10), 𝛼 = 0.3. 

and 
𝑛𝜆 = 0.2, 𝑖𝑓 𝜆 ≠ 𝜆𝑑 ,
𝑛𝜆 = 0, 𝑖𝑓 𝜆 = 𝜆𝑑 .

 

 

Note that 𝐴𝜆 = 𝐴𝜆(𝑡𝑛) denotes the amplitude of the mode (bed pattern) of lengthscale 𝜆 at time 𝑡. Similarly 

𝜔𝑟𝜆(𝑡𝑛) refers to the linear growth rate of lengthscale 𝜆 that pertains for 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1 . The dominant 

lengthscale is denoted as 𝜆𝑑, the amplitude of which (𝐴𝜆𝑑) is maximum of all lengthscales at that time.  

𝐴𝜆(𝑡 = 0) = 0.1 is the same for all lengthscales; as noted above, this is also the minimum amplitude. 

During storm events, all pre-existing bed-forms are expected to be erased. This is simulated by resetting 

the amplitudes of all lengthscales to 𝐴𝜆(𝑡 = 0). The maximum amplitude was set to 1. The values of 𝐴𝑚𝑖𝑛 

and 𝐴𝑚𝑎𝑥 do not convey any significant meaning, except that a ten-fold growth seems to represent roughly 

the duration it takes for a crescentic bathymetry to reach a new stable situation after a storm.  

 

On the right hand side, the first term (I) describes an initially exponentially growing (decaying) amplitude, 

assuming a small enough initial amplitude, with growth rate 𝜔𝑟𝜆. This is combined with a self-limiting 

term (II) to represent limiting finite-amplitude effects when bed-forms start to reach their final height. The 

form chosen is motivated by the Stuart-Landau equation (Drazin and Reid, 1981), which we refer to here as 

a Landau equation. The value of 𝑙𝜆(𝑡𝑛) is chosen to ensure stabilisation of the bed-pattern amplitude when 

|𝐴𝜆| → 1 . Furthermore, an additional term representing the higher harmonic interaction (III) is 

implemented. This term allows the energy transfer to lengthscales that are half the original lengthscale, 

when this original lengthscale exhibits considerable amplitude itself. The energy transfer factor, 𝛼 = 0.3, 

was chosen (see Chen et al., 2017). The dependence of 𝑚2𝜆 on 𝐴𝜆 is included to ensure that all modes can 

only achieve the same maximum amplitude, so that this term, if operational, accelerates growth only, and 

becomes inoperational as |𝐴𝜆| → 1.  

 

As mentioned earlier, the effect of equilibration (II) and higher harmonic interaction (III) were included in 

the model of Chen et al. (2017). To study the effect of suppression term of non-dominant modes, we 

introduce a fourth term (IV) into the amplitude development equation. Based on the amplitude development 

in the field, we use the formulation shown in equation (2), where 𝐴𝑠𝑢𝑝𝑝 refers to an amplitude when the 

suppression term is at “half strength”. Here a value of 0.9 is chosen for 𝐴𝑠𝑢𝑝𝑝, which means that if a 

dominant lengthscale attains an amplitude roughly between 0.85 < 𝐴𝜆𝑑 < 0.95, the suppression of the 

other lengthscales occurs. Note that the factor 30 in term IV means that this term is activated/de-activated 

fairly abruptly at this threshold. The level of suppression is governed by 𝑛𝜆. 

 

3. RESULTS 
 
The model is used to study the evolution of crescentic bars at Duck for a period of two months, from 20 

August 1998 until 22 October 1998. The forcing and geometry used in this study are observations at the 

same field (Van Enckevort et al., 2004), as mentioned in section 2.2. The predicted amplitude development 

for all examined lengthscales is shown over time in figure 2. Scenarios with and without the suppression 

effect  are presented in figure 2a and 2b, respectively, with light color indicating low amplitude and dark 

color high amplitude.  In all early post storm stages, figure 2a and 2b show the same amplitude 

development. Only after a certain time of evolution, the suppression term in figure 2a appears to be 
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effective after both storm 1 and 3. This is as expected, since the suppression term only works when the 

amplitude of one mode (dominant lengthscale) reaches a certain value. The non-dominant lengthscales are 

eradicated afterwards. Note that the suppression term is not activated after storm 2, this is because the 

interval between storm 2 and 3 is not long enough for the amplitude of any length scale to reach the 

threshold amplitude.   

 

A comparison with the field observations of Van Enckevort et al. (2004) is also shown in figure 2. The 

predicted dominant lengthscale (the biggest amplitude at each time 𝑡 = 𝑡𝑛) is shown as a coloured dot, and 

the observed lengthscales are shown as larger white dots. The effect of the suppression term in figure 2a 

results in the rapid disappearance of any lengthscale other than the dominant mode. For the post-storm-1 

period, this occurs approximately at the same time as when the dominant lengthscale in figure 2b drops 

below the observed lengthscale (4 September). The suppression term, therefore, results in the stabilisation 

of the bathymetry and the ongoing dominance of a lengthscale that lies reasonably close to the observed 

lengthscale. After the third storm, a similar behaviour is observed at about 10 October. However, 

observation after the third storm shows continued fluctuation of lengthscale (see Fig. 2a), allied to a more 

narrowed band compared to the immediate post-storm period. 

 

Figure 2. Amplitude development for scenario (a) with suppression effect, I+II+III+IV; and (b) without suppression 

effect, I+II+III. The predicted dominant lengthscales are labeled with coloured dots, and observed lengthscales, 

according to Van Enckevort et al. (2004), are illustrated as large white circles. 

 

4. Discussion 
 

A quantitative comparison between the observed and predicted lengthscale shows that the inclusion of 

suppression effect appears to be unimportant for the prediction of dominant lengthscale. In the scenario 
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without suppression effect, model produces a relative error of 0.31. With the suppression effect, model 

produces a similar relative error, 0.33. Note that the comparison is taken at the moments when observation 

could be made, and the relative errors are averaged values. Though the suppression term shows no 

improvement in predicting the dominant length scale, it is important when considering the evolution and 

stabilisation of the whole bed profile. As shown in Fig. 3, with the aid of the suppression effect, the 

averaged amplitude, �̄�(𝑡𝑛) =
1

𝑁𝜆
∑ 𝐴𝑗(𝑡𝑛)
𝑁𝜆
𝑗=1 , of model prediction is smaller than that of without 

suppression effect. Note the additional suppression term is only effective for the later post-storm periods 

when shorter lengthscales are dominant, which is in line with the finding of Smit et al. (2012). 
 

 

Figure 3. Averaged amplitude (�̄�) over time, with blue and black solid for scenario with and without suppression 

effect, respectively. 

 

In this study, the threshold amplitude when the suppression effect occurs is defined by parameter 𝐴𝑠𝑢𝑝𝑝. 

Here, a value of 0.9 is chosen, which means the suppression effect occurs when the amplitude of dominant 

lengthscale reaches around 0.85. This value is estimated based on observations (Van Enckevort et al., 

2004). There is no specific study on this threshold amplitude yet. Smit et al. (2012) did look into the effect 

of force duration (which also means the development duration of preferred bed pattern) on the stability of 

sea bed, but no effort is given on the amplitude. The sensitivity of relative error between predicted and 

observed lengthscale on the value of 𝐴𝑠𝑢𝑝𝑝  is examined and shown in figure 4. By allowing 𝐴𝑠𝑢𝑝𝑝  to 

gradually increase from 0.6 to 1, the relative error first stays at around 0.32 then experiences a sudden 

increase to 0.4 when 𝐴𝑠𝑢𝑝𝑝  is around 0.72.  This is because the selected dominant lengthscale changes for 

various 𝐴𝑠𝑢𝑝𝑝 .  To illustrate this, the amplitude evolutions for 𝐴𝑠𝑢𝑝𝑝 = 0.65  (pink dot in figure 4), 

𝐴𝑠𝑢𝑝𝑝 = 0.75 (blue dot) and 𝐴𝑠𝑢𝑝𝑝 = 0.9 (red dot) are presented in figure 5. In figure 5a, the suppression 

effect occurs at around 30 August, leading to a dominant lengthscale around 400 m which is quite close to 

the observation, the predicted dominant lengthscale stays at this value afterwards because of the 

suppression effect. On the other hand, in figure 5b, the suppression effect occurs at around 2 September, 

with a dominant lengthscale close to 550 m. The suppression effect opposes the higher harmonic 

interaction, thus preventing the energy to be transferred from 550 m lengthscale to shorter lengthscales, 

resulting in a big relative error between observed and predicted lengthscales. For 𝐴𝑠𝑢𝑝𝑝 = 0.9, also the 

value used in this study, the suppression effect occurs at around 4 September when the dominant 

lengthscale is at 400m. The threshold amplitude is important for the stabilisation of crescentic bars and the 

evolution of crescentic bars. More studies are required for the determination of this parameter.   
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Figure 4. Sensitivity of relative error between predicted and observed lengthscales on 𝐴𝑠𝑢𝑝𝑝 . 

5. Conclusion 
 

In this study, we investigated the stabilisation mechanism in the long-term evolution of crescentic bar 

systems. The model of Chen et al. (2017) is extended by including the suppression effect of non-dominant 

lengthscale in the amplitude development equation. Using the new model, the bathymetric evolution of 

crescentic-barred beaches at Duck (NC) from 20 August to 22 October 1998 was reproduced. The field 

observations, i.e., wave conditions, water levels and crescentic bar information, over the same period were 

obtained from Van Enckevort et al. (2004).  

 

Results show that the inclusion of the suppression effect of the non-dominant lengthscale leads to the 

stabilisation of sea bed, by limiting the overall amplitude of bathymetry and sustaining the dominance of a 

few lengthscales in later post-storm stage. The suppression effect can also affect the evolution of the 

dominant lengthscale. The threshold amplitude determines the moment when the suppression effect starts 

working, and hence determines the dominant lengthscale.   
 

Overall, implementing the nonlinear effects identified in Chen et al. (2017), i.e., damping of amplitude 

growth and the transfer of energy to higher harmonic lengthscales, together with the suppression of non-

dominant lengthscales, into a linear stability model can well describe the nonlinear evolution of a 

crescentic bar system.  Moreover, the model investigated in this study requires limited bathymetric data 

and performs with high computational efficiency. This study thus provides an alternative way other than 

use of a complicated numerical model in predicting long-term morphological development of crescentic 

bars and identifying the underlying physics.   
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Figure 5. Amplitude development for (a) 𝐴𝑠𝑢𝑝𝑝 = 0.65; (b) 𝐴𝑠𝑢𝑝𝑝 = 0.75; and (c) 𝐴𝑠𝑢𝑝𝑝 = 0.9. 
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