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Abstract 

 
Based on the long wave equation, an analytical solution is obtained for long waves propagating over a circular island 

mounted on a flat bottom. The profile of the island is idealized as a power function of the radial distance with arbitrary 

powers. The solution is found by using the separation of variables and the Frobenius method. The newly derived 

analytical solution is compared with the previous solution. Excellent agreement is found between the two solutions. 

Then, the effects of island profile on wave distribution are studied. Waves trapped by the island form a complex 

amplitude distribution pattern in the vicinity of the coastline. Both the average slope and the curvature of the island 

profile have significant influence to the wave distribution pattern. Resonance may occur, which makes the wave pattern 

change dramatically even if the geometrical parameters of island profile vary slightly.  
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1. Introduction 

 

Tsunami is one of the biggest threats to coastal areas, especially to the island which may directly face the 

long wave propagating from the deep water. The height of long waves approaching an island can increases 

several times in the near shore area, and finally run up to a certain elevation into the land, which usually 

causes great disasters. Unexpected large tsunami billows were observed in the lee of islands in tsunami 

events such as the tsunami which attacked the Flores Island, Indonesia, on December 12, 1992, and the 

tsunami which attacked Okushiri Island, Japan, on July 12, 1993. This phenomenon greatly interested 

researchers in coastal engineering field, and has been proved as a consequence of refractive focusing or 

resonance of virtually trapped waves.  

     Many studies have been carried out on the scattering of waves around a circular island. Lautenbacher 

(1970) derived an integral equation to solve this problem. Smith and Sprinks (1975) studied this problem 

numerically by using the mild-slope equation. Liu et al (1995) studied the solitary waves climbing up a 

circular island numerically based on the two-dimensional shallow-water wave equations, and compared 

with the large-scale laboratory experiments of tsunami runup on a circular island carried out by Briggs et al. 

(1995). There are also several analytical studies on long waves scattering around an island, which may be 

more useful to understand the mechanics of the phenomena. As early as 1950, Homma (1950) studied long 

waves around a cylinder mounted on a parabolic shoal. Zhang and Zhu (1994) obtained an analytical 

solution of the long wave equation for long waves around a conical island. Zhu and Zhang (1996) obtained 

a solution for a cylinder mounted on a conical shoal. There are also some analytical studies focused on 

other axis-symmetric topographies, such as a submerged truncated paraboloidal shoal (Lin and Liu, 2007), 

a circular hump (Zhu and Harun, 2009), a circular pit (Suh et al., 2005; Jung and Suh, 2008). However, 

most solutions are limited to cases in which topography is expressed as a certain integral power of the 

radial distance. Only a few solutions were obtained for the topography described by a power function of 

the radial distance with arbitrary powers. Yu and Zhang (2003) obtained a solution for a cylinder mounted 

on a circular shoal with relatively general geometry, in which the profile of the shoal is a power function of 

arbitrary power. Niu and Yu (2011) derived a solution for a circular submerged hump described by a power 

function of arbitrary power plus a constant.  
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     In this study, we focus on the problem that long waves scattering around a circular island, in which the 

water depth around the island varies in proportion to an arbitrary power of the radial distance. The 

idealized physical problem is shown in Figure 1. The same problem has been studied by Jung et al. (2010). 

In their study, Taylor series expansion is used to make the governing equation solvable. A new method will 

be introduced to find the analytical solution in this study, which is expressed in Section 2. Then the solution 

is compared with that of Jung et al. (2010), and the effect of island profile on wave propagation is 

discussed. 
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Figure 1. Sketch of the physical problem 

 

 

2. General solution 

 

The long wave equation is applied to describe linear long waves passing over an axial symmetrical 

bathymetry without energy dissipation, which can be written in polar coordinates ( ,r q ) as following.  
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where   is the complex-numbered water surface elevation with its modulus representing the conventional 

wave amplitude and its argument representing the relative phase, h  is the local water depth which is a 

function of the horizontal coordinates,   is the wave angular frequency, g  is the gravity acceleration. 

    By separation of variables, the water surface elevation can thus be expressed by 
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where 
nD  and 

nE  are constants, and ( )nR r  is a function of r  satisfying the following ordinary differential 

equation. 
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     Assume that the water depth in the problem of interest is expressed by 

 

 1( )h r r h                                                                                                          (4) 

 

where r  is the distance away from the crest of the island, 1h  is a positive constant representing the height 

of the island above still water surface,   and   are parameters which jointly determine the shape of the 
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island. Substituting Eq. (4) into Eq. (3) results in 
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     In case of 
1 0h  , it is noted that the problem degenerates to that solved by Yu and Zhang (2003). Eq.(5) 

then can be transformed into Bessel’s equation of real orders. However, when 
1 0h  , it is hard to 

transform Eq.(5) into a known special equation. Thus we turn to finding a solution by using the Frobenius 

type series.  

     Before applying the Frobenius method to Eq. (5), a mapping should be introduced into Eq. (5), in order 

to make sure that the physical domain of interest is located within a convergent region of the series solution. 

And the Frobenius method is useful in finding solution of the differential equation whose coefficients are 

polynomials. In case that   is not an integer, the coefficients of all the terms in Eq. (5), 
2

1( )r h r  , 

1( 1)r r h     , 
2 2 2

1( )r g n r h   , cannot be expanded in polynomial form with finite terms.  

     In the study of Jung et al. (2010), they used the Taylor series expansion to deal with the coefficient 

which is not in polynomial form and transformed it into an infinite series. To avoid that coefficients being 

infinite series, a new transform is introduced in the present study. It is no doubt that the arbitrary real 

constant   can be expressed or approximately expressed as a fraction, written as /p q  . In which 

,p q  are positive integers. Then a mapping is introduced to Eq. (5) 
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Then we have 
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where  
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It is known that (1 ) pt can be expanded in polynomial form as 
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In which, 
k

pC  is the combinational formula. Here, it is defined as 
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It is clear that the coefficient of each term in Eq. (7) can be expanded in polynomial form, when 

2 0p q  , i.e., 2  . Otherwise Eq. (7) multiplied with 
2(1 ) q pt   will be solved, when 2 0p q  , i.e., 

2  . And the Based on Frobenius’ theory, the following series solution is assumed. 
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In which, 
ma  and c are coefficients to be determined. It can be proved that the series solution converges for 

1t  , and the convergent region can cover the physical domain of interest in this study. After submitting 

Eq.(11) into Eq.(7) and collecting terms with the same order of t  , the solution of c is obtained by equating 

the coefficient of the lowest order of t  to zero. 
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     It is a double repeated root. One particular solution of 
nR can always be obtained as  
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      Another independent particular solution contains logarithmic terms, which is singular at 0t  . 

However, in present study the water surface elevation is finite at the coastline ( 0t  ), so this particular 

solution does not appear in the final solution. Only the solution in Eq. (13) is formulated, the coefficient in 

Eq.(13) is obtained as 
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In case of 2 0p q  , i.e., 2  , 
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where 
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In case of 2 0p q  , i.e., 2  , 
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where 

 

 2 2 2 2 2

0, 2 2 2 2( )( ) (2 2 )m q p qA C C m m q p pm q v                                           (19) 

 

2 2 2

, 2 2 2 2

1 1 2 2

1 2 1 2 2 2

( 1) ( )( )

( 1) ( )

k k k

k m q p q

k k k k

q p q q p q

A C C m m

p C C m n q C C

 

  

 

   

   

       

                           (20) 

 

By the original variable r , the solution can be written as 
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3.  Solution for a circular island on a flat bottom 

 

The physical problem of interest in this section is long wave scattering around a circular island on an 

otherwise flat bottom, as shown in Figure 1. The water depth over the entire domain is described by 
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in which,   and   are parameters which jointly determine the shape of the island.  
1h  is the height of the 

island above still water surface, 
1r  is the radius of island above still water surface, 

0h  is the water depth 

over the flat bottom, 
0r  is the radius distance from the center to the toe of the island in the horizontal plane. 

The domain concerned is divided into two regions: the outer region with constant water depth (
0r r ) and 

the inner region with variable water depth (
1 0r r r  ). 

    We assume that the incident wave is a long-crested sinusoidal wave propagating in the positive x  

direction. The water surface elevation in the outer region is given by MacCamy and Fuchs (1954), which is 

expressed by  
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In which, the first term corresponds to the incident wave and the second term corresponds to the scattered 

wave. 
IA  is the incident wave amplitude, 1i   , 

0k  is the wavenumber over the flat bottom in the outer 

region ( 0 0k gh for long waves), 
nB  are complex-valued constants to be determined, 

nJ  is the Bessel 

function of the first kind and the n-th order; 
1nH  is the Hankel function of the first kind and the n-th order; 

and 
n  is the Jacobi symbol defined by  
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     The general solution of the water surface elevation in the inner region is available from the previous 

section. Considering that the problem under consideration is symmetrical with respect to x-axis, we have 
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     On the other hand, the patching conditions at the common boundary of the two regions, i.e., at 
0r r , 

require  

 

 1 2 0( )r r                                                                                          (26) 

 1 2

0( )r r
r r

  
 

 
                                                                         (27) 

 

Result in 

 



Coastal Dynamics 2017 

Paper No.044  

1587 

 

 
 I 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n

n n n n n

n

n n n n

A i R r k J k r R r J k r
B

R r k H k r R r H k r

  
 

 
                                 (28) 

 
 

1

I

0 0 0 1 0 0 0 1 0 0

2

( ) ( ) ( ) ( )

n

n

n

n n n n

A i
D

r R r k H k r R r H k r








 

                            (29) 

 

The boundary condition at the coastline request the normal flux at the coastal line is zero (Mei, 1989), 

which is written as 
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Obviously, Eq. (30) is automatically satisfied in this solution. 

     So far, we have derived a novel solution for long waves scattering around a circular island. In contrast to 

the study of Jung et al. (2010), the present solution does not rely on the Taylor series expansion.  

 

 

4.  Comparison with previous solution 

 

4.1. Validation with the  previous study 

 

In this section, the present solution is compared with that obtained by Jung et al. (2010). In order to 

validate the present solution, we compared the present solution to that of Jung et al. (2010) for long waves 

passing over an island with different parameters  . The parameters of the islands used were 
1 10kmr  , 

0 4kmh  , 
0 30km, 90kmr  , and 2 3, 1, 2  . The incident wave periods is T=720s. Figure 2 shows the 

variation of relative wave amplitudes along the coastline, in which solid lines represent results of the 

present solution and dots represent results by Jung et al. (2010). It can be seen that the calculated wave 

runup along the coastline by the present solution agrees very well with that of Jung et al. (2010).  

  

   
(a) r0=30km                                                                      (b) r0=90km 

 
Figure 2. Compare the present solution with that of Jung et al. (2010)  

 

4.2. Convergence of the series 

 

The main difference between the present solution and that of Jung et al.(2010) is the solution in the inner 

region with variable water depth. The solution of Rn is an infinite series. In practice, the series should be 

truncated as a finite series with M terms within a certain tolerance.  
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     From the expression of Rn, we can easily conclude that the series is harder to converge with large r in 

case other parameters keep constants. In case that T=720s, r1=10km, h0=4km,  =2, r0=3r1, we calculated 

the series of Rn by trial and error with a truncation error 1 6( ) 10M M M

n n nR R R   . Obviously the larger 

1r r  , the more terms, or the larger M, are needed to get the converging value of Rn. It is also found that the 

larger n corresponds with the larger M, as shown in Figure 3(a). Here, r=r0 is used for getting the maximum 

M. Comparing the present solution with that of Jung et al. (2010), it can be clearly seen that the present 

solution is easier to converge within the certain tolerated error in some cases. 

     We also check the influence of the parameter   on Rn, while retain the other parameters including r=r0 

and n=0. The power   is chosen to be 1/4, 1/3, 1/2, 2/3, 3/4, 1, 3/2, 2, 5/2, 3. The number of terms 

remained M is obtained by trial and error, shown in Figure 3(b). Circles represent the results of present 

solution, and triangles represent that of Jung et al. (2010). The number M shows a rising trend as the 

parameter   increases by using the solution of Jung et al. (2010). In case that   equals 1/4, 1/3, 1/2, 1, the 

convergence of the present solution is same with that of Jung et al. (2010). However, in most cases, 

especially   larger than 1, the present solution converges faster than the solution of Jung et al. (2010).  

 

   
 (a) M vs. n                                                                (b) M vs.  

 

Figure 3. The influence of n and   on the convergence of Rn  

 

 

5. Results and discussions 

 

In this section, the effects of the island profile on wave refraction and diffraction are studied by using the 

derived analytical solution.  Considering a circular island with known radius r1 and the water depth in the 

surrounding flat area h0 is fixed, there are two geometric parameters that control the underwater profile of 

the island. One is the radius of underwater part r0, the other is the parameter   representing the curvature 

of the profile. The change of r0 is equivalent to changing the average slope of underwater profile.  

 

5.1. The distribution pattern of wave amplitude  

 

Figure 4 gives a global view of the relative wave amplitude IA corresponding to  r0=3r1, 6r1, 9r1, 12r1, 

while the other parameters are fixed. Here, r1=10km, h0=4km, 1   and the period of incident long wave 

T=720s. In Figure 4, the solid circle shows the coastline of the island and the broken circle shows the toe of 

the island. All the results show that the wave amplitude is large in the vicinity of the coastline. It suggests a 

concentration of wave energy near the coastline due to refraction and diffraction. In some cases, wave 

amplitude is much amplified, because incident waves in a large area have been trapped near the coastline. 

More incident waves possibly reach the vicinity of the coastline in the case of a mild slope. So the wave 

amplitude near the coastline becomes higher and its distribution turns more complex as r0 increases.  

     

0 10 20 30 40
0

50

100

150

200

250

300

350

400

n

M

 

 

Jung et al.(2010)

present solution

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

160



M

 

 

Jung et al.(2010)

present solution



Coastal Dynamics 2017 

Paper No.044  

1589 

 

 
(a) 0 13r r                                                                       (b) 0 16r r  

 
(c) 0 19r r                                                           (d) 0 112r r  

 

Figure 4. Contour of relative wave amplitude corresponding to different r0 

 

    Figure 5 shows the profile of the island corresponding to 1 3, 2 3,1.3,1.6, 2, 2.5   with fixed r1, r0 and 

h0. The profile is convex at 1  and is concave at 1  . The larger   corresponds with a steeper slope at 

the toe and milder slope near the water surface. Figure 6 shows the contour of relative wave amplitudes 

around the island with different  , while the other parameters are fixed as r0=9r1, r1=10 km, h0=4 km and 

the wave period is T=720s. It is noticeable that not only the average slope has great influence on wave 

amplitude distribution around the island, but also the curvature parameter .  The larger   results in more 

energy concentration near the coastline and a more complex wave distribution pattern. But the maximum 

wave amplitude and the area of high wave do not grow monotonously as the parameter  increases.  It can 

be clearly seen that the area of the relative wave amplitude greater than 6 is much larger in the case of  

1.3   than in the cases of 1   and 1.6  , as shown in Figure 6(c), Figure 4(c) and Figure 6(d). 

 

 
Figure 5. Island profile corresponding to different values of   
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(a) 1/ 3                                                              (b) 2 / 3   

 
(c) 1.3                                                                  (d) 1.6   

  
(e) 2                                                                    (f) 2.5   

 

Figure 6. Contour of relative wave amplitude corresponding to different values of    

 

5.2. The frequency variation of the amplitude factors  

 

In order to get better understanding of the complex distribution of wave amplitude, the modal responses of 

waves to the island is analyzed. Waves in the vicinity of the island are expressed by Eq. (25) as a series of 

partial waves with an angular dependence of cosn . Here, the solution corresponding to cosn  is called as 

the n-th mode of wave. As Rn=1 when r=r1, the coefficient Dn is the amplitude factor of each mode of wave 
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at the coastline, which is a good indicator to show the modal responses of waves to the island.  

      The value of Dn is determined by three independent parameters, the dimensionless wave frequency, the 

average slope and the curvature of the island. Figure 7 and Figure 8 show the absolute value of Dn for 

primary modes as a function of the incident wave frequency in the cases of different average slopes or 

different curvature parameters. In Figure 7, the curvature parameter   is fixed to be 1 in all the cases and 

varying r0 is to change the average slope of island profile.  In Figure 8,   is changed while the average 

slope is fixed.  

      Generally, the value of Dn increases at low frequency and tends to a constant at high frequency. For 

waves of very low frequency, Dn tends to1 in the lowest mode and decreases quickly as the mode n 

increase. The number of dominant modes increases as the incident wave frequency increases for a certain 

island. So the wave scattered by the island shows more complex distribution pattern as wave frequency 

increase, because the higher mode forms a more complex wave pattern.  

      The variation of Dn between the low and high frequency is not monotonous. Resonance phenomenon 

can be found for larger n. It means that much higher waves near the coastline will be formed if the wave 

frequency is near the resonant peaks. In the case of the island with 1.3  , the resonant peak of the third 

mode is about  
1 2

1 0 0.44r h g


 , corresponding to the wave period  720sT  . That is why especially large 

waves occur in the case of 1.3  , as shown in Figure 6(c). 

      The resonant peaks shift to the high frequency side as n increases. Increasing n leads to much larger and 

sharper resonant peaks. A larger peak value implies large wave amplitude around the coastline when the 

corresponding mode has been excited. While a sharper peak implies that the corresponding mode is more 

difficult to be excited in natural marine environment.   

 

  
(a) 0 13r r                                                                       (b) 0 16r r  

   
(c) 0 19r r                                                           (d) 0 112r r  

 

Figure 7. Frequency dependence of the amplitude factors Dn corresponding to different r0 
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(a) 1/ 3                                                     (b) 2 / 3   

 
(c) 1.3                                                            (d) 2   

Figure 8. Frequency dependence of the amplitude factors Dn corresponding to different   

 

      The shape of island profile has significant impact on the curve of Dn. The increase of r0 causes the 

resonant peaks of all modes move toward lower frequency.  It suggests that longer wave can be trapped by 

the island with larger r0 or milder average slope.  There is only one significant resonant peak in the first six 

modes when   is small, as shown in Figure 8(a), 8(b) and 8(c).  But more resonant peaks occur when  =2, 

as shown in Figure 8(d). The resonant peaks also move toward lower frequency as   increases. This 

implies more complex wave distribution pattern corresponding to larger  .   

 

 

6.  Conclusion 

 

In this study, we derived a new analytical solution for long waves scattering around an island. The island is 

idealized to be axial symmetrical and its radial profile can be described by a power function with arbitrary 

powers. The water depth around the island is expressed as 1( )h r r h  , in which  ,  , 
1h  are three 

independent parameters. The linear long waves passing over an axial symmetrical bathymetry without 

energy dissipation is described by a long wave equation written in polar coordinates. And the equation is 

then solved by separation of variables and the Frobenius method. 

     The Frobenius method is useful in finding solution of the differential equation whose coefficients are 

polynomials. In this case, if the profile parameter α is not an integer, the coefficients of the derived 

differential equation cannot be directly written in polynomials, it will rise a great difficulty to solve the 

equation. In the study of Jung et al. (2010), they used the Taylor series expansion to deal with the 

coefficient which is not in polynomial form and transformed it into an infinite series. To avoid that 
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coefficients being infinite series, a new transform is introduced in the present study. First, the arbitrary real 

constant α is expressed or approximately expressed as a fraction, written as α=p/q. Then a mapping is 

introduced, which can successfully make the equation solvable. 

     The newly derived solution was compared with the previous solution obtained by Jung et al. (2010). The 

cores of the two solutions are totally of different expression, because different derivation method was used 

to get the general solution in the inner region with variable water depth. By applying the two analytical 

solutions to the same cases, it can be seen that the present solution agrees well with that of Jung et al. 

(2010). By comparing the convergence of the series solution, it shows that the present solution is superior 

to that of Jung et al. (2010) in most cases.  

     Based on the derived solution, the effects of the island profile on wave distribution are discussed. The 

analytical results reveal that not only the average slope but also the curvature parameter has great influence 

on wave amplitude distribution around the island. Generally, the larger curvature parameter and the smaller 

average slope result in more complex wave distribution pattern and higher wave amplitude near the 

coastline of island. But wave amplitude is not monotonously varying as gradually changing the geometrical 

parameter of island profile. Resonance phenomenon makes the variation of wave pattern more complex. 

The resonant frequency is found increasing as the average slope increase and decreasing as the curvature 

parameter increase. 
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