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Abstract 

 
In the present time of sea-level rise and climate change a global shift has occurred toward sandy coastal 
protection measures and Building with Nature. These type of protection measures impose extra uncertainty 
on the instantaneous state of the coastal system over time for which present deterministic forecasting 
techniques are not capable of providing necessary information on uncertainties and hence could display a 
false sense of accuracy and skill. At present in long term morphological modeling a full systemic approach 
for uncertainty assessment has not yet been applied. This paper investigates the use of a Bayesian Network 
as a tool for uncertainty assessment in decadal scale morphological modeling for the evolution of a mega 
nourishment at the Dutch North-Holland coast, the Hondsbossche Dunes (HBD). The Bayesian Network is 
trained with an existing set of model data and field data of one year bed development. The Bayesian 
Network successfully transfers the bandwidth in input variables, model uncertainty and calibration 
uncertainty to an uncertainty bandwidth around the output parameter of choice.  
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1. Introduction 

 

A good prediction of coastal behavior is important in the present time of sea-level rise and climate change. 

Sandy coastal protection measures have been increasingly proposed in the last decades for locations with 

receding coastlines. The recent adaptation of the Building with Nature paradigm for sandy interventions 

(De Vriend et al, 2014) imposes extra uncertainty on the instantaneous state of the coastal system over time 

as it proposes using natural dynamics to our benefit. With little knowledge on the magnitude of the 

uncertainties in our predictions of coastal evolution, the long-term strategy development and design of 

projects is impeded. 

At present, deterministic forecasting on decadal time-scales with 2DH-models is common practice in 

coastal modeling for wave and tide exposed regions (i.e. Luijendijk et al 2017). These (traditional) 

prediction techniques rely on individual deterministic predictions that are not capable of providing 

necessary information on uncertainties and hence could display a false sense of accuracy and skill. 

Probabilistic forecasts are less common and are thought to be computationally expensive, yet could be 

effective for decision making under uncertainty.  

In the last decade the first probability assessments have emerged in certain fields of coastal modeling. 

Baart et al. (2011) and Baart (2013) have shown that confidence bounds on morphological evolution could 

be obtained by incorporating stochastics of dune strength (Figure 1, left). Plant et al. (2011a;2011b) have 

successfully applied a stochastic approach in modeling the hydrodynamics of surfzone processes. These 

findings suggest that stochastic modeling of the full profile in the near future would be possible (Figure 1, 

right).  

One of the techniques to incorporate uncertainty into predictions is the Bayesian Network (BN 

hereafter). Plant et al. use such a BN, revealing it can accurately transfer input uncertainty (i.e. offshore 
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wave parameters) to output uncertainty (inshore hydrodynamics). Similarly, Gutierrez et al. (2011) use a 

BN to make probabilistic predictions of shoreline retreat in response to different future sea level rise rates. 

They show that BNs can make quantitative, probabilistic predictions that can be applied to coastal 

management decisions. In meteorology stochastic approaches are far more common. Coelho et al. (2006) 

show that a BN can be used to improve uncertainty estimates of rainfall predictions.  

The objective of the current study is to do an initial investigation on the use of a BN for morphological 

modeling of surfzone evolution. It is specifically a step towards a full systemic approach for uncertainty 

assessment in long term morphological predictions (Figure 1, right), examining BN as one of many 

possible concepts for probabilistic assessments.  

 

 

 
 

Figure 1: Schematic on stochastic model simulations. Traditional, determinist forcing of morphological models 

resulting in deterministic predictions of coastal evolution and including stochastics only for dune strength (left panel) 

versus the probabilistic assessment of morphological changes of the full profile (right panel), including stochastic wave 

forcing and initial bed conditions.  Shading indicates a confidence interval around forecasted values. 

 

 

2. Methodology 

 

2.1 Approach 

 

To investigate the use of BNs as a tool for uncertainty assessment in decadal scale morphological modeling 

a simple BN is introduced that propagates 1) intrinsic uncertainties (i.e. wave forcing), 2) uncertainties 

related to model limitations (i.e. cross shore profile development) and 3) model uncertainties through the 

process chain. The BN is constructed and used to quantify model prediction uncertainty for a case study 

beach, the Hondsbossche Dunes mega nourishment at the Dutch North-Holland coast. The network is 

trained with an existing set of model – and field data and the BN applicability for uncertainty propagation 

is investigated with one year of available observations.  

This training data set consists of a set of sensitivity calculations testing individual relationships 

between uncertain parameters (e.g. wave forcing magnitude) and response (volume loss in the area). These 

calculations were conducted before construction of the HBD (Kroon et al, 2015) as part of the prognosis 

for required coastal maintenance in the 20 years after construction. In these calculations several sources of 

uncertainty in a 2DH process-based model approach were identified, quantified and used in a Monte Carlo 

analysis.  

In this study we apply the previously computed sensitivity calculations in a network, such that it can 

be used to forecast the bulk volume loss at the nourished site after training. For the implementation of the 

Bayesian Network the software package Netica (Norsys, 2016) is used.  

To test the validity of the BN, it is tested for consistency with previously known dependencies (i.e. a 

face validity check) and tested against observations from the first year after construction (i.e. evidence 

testing). 

 

2.2 Hondsbossche dunes case study beach 

 

The case study beach used for the evaluation of the Bayesian Network is the recent reinforcement of the 

Hondsbossche and Pettemer Sea Defence, called the Hondsbossche Dunes (HBD). The project consists of a 

mega nourishment of 35 million m
3 

situated along the Dutch North-Holland coast between IJmuiden and 

Den Helder (Figure 2). The alongshore length is approximately 12 km and the nourishment extends 500 m 

seaward with respect to the adjacent coastline, Figure 2. The nourishment is situated in a wave dominated, 

micro-tidal environment on a coastline that has a history of structural erosion.  
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Figure 2: Hondsbossche and Pettemer Zeewering, a sandy coastal flood protection near Petten, the Netherlands. The  

original, hard protection in 2005 (left) and the new sandy coastal protection in 2015 (right). 

 

After installation of the nourishment in 2015, the sub-aqueous and sub-aerial bed development of the HBD 

is monitored along 11 transects with a monthly interval.  

 

2.3 Bayesian Networks 

 

A BN is a graphical representation of a high dimensional probability distribution of a finite set of discrete 

variables (Jensen and Nielsen, 2007). At the core of the Bayesian network is Bayes theorem, which can be 

used to propagate evidence through the network in a predictive (forward) or diagnostic (backward) manner. 

The network needs to be trained on large sets of (model/observational) data. After training all information 

of the model calculations is contained in the model. 

 

Bayes theorem is given as: 

 

     𝑝(𝐹|𝑂) =
𝑝(𝑂|𝐹)𝑝(𝐹)

𝑝(𝑂)
             (1) 

 

in which the left-hand side represents the updated conditional probability of a forecast, F, given a 

certain set of observations, O.  

Bayesian Networks are used for different purposes such as the inference of the belief in a certain 

event given certain evidence, determination of the most likely explanation of a certain event and for 

uncertainty propagation (Den Heijer, 2013; Plant et al 2011a; Plant et al 2011b). A Bayesian Network 

differs from a Neural Network in the way that in a Bayesian Network not all nodes are related. Therefore it 

is possible to include knowledge on the relations and the direction of these relations between parameters in 

the network.  

 

2.4 Network formulation 

 

A basic BN is constructed using four input parameters with uncertainty exemplary for uncertainty in 

forcing, morphology, model uncertainty and model calibration. The coastal state indicator under 

consideration is the bulk volume loss over the project bounds in alongshore direction (ΔV). The four 

contributions to uncertainty under consideration, which are quantified in Kroon et al (2015), are:  
1. The uncertainty due to natural variability in alongshore wave power (Py) is originates in 

predictions from to the inability of the model to predict the (semi) random order of future wave 

events. Additionally input reduction, a method generally used to keep calculation times within 

workable limits  (Walstra et al, 2013), inevitably goes along with loss of detail in temporal (and 

temporal?) resolution. Hence, natural variability is a source of uncertainty. To estimate this 

uncertainty 20 years of offshore observations of waves at measurement station Noordwijk (ca. 50 

km from HBD, see Figure 2) are translated to points along the -8 m+NAP depth contour of the 

planned nourishment with SWAN (Simulating WAves Nearshore, Booij et al., 1999). The 

alongshore sediment transport gradient is determined for each time-step with the CERC formula 

(CERC, 1984). In this way the yearly average alongshore component of the wave power is related 



Coastal Dynamics 2017 

Paper No. 254 

1912 

 

to the sediment transport gradient. For the years in the dataset the mean alongshore wave power 

varied between -0.41 and 0.33 kW/m (negative value indicates waves from the south).  

2. The uncertainty due to (seasonal and spatial) variations in profile shape is introduced by 

limitations of the model. Present day process based models are able to reproduce morphological 

changes during storm conditions but the performance is highly variable when modeling recovery 

of the foreshore and beach, introducing uncertainties in the instantaneous state of the cross shore 

profile, the associated alongshore transport and transport gradient. The relation between the 

profile steepness and the alongshore transport gradient is established with UNIBEST-TC 

(Bosboom, 1997; Bakker, 1995) for 40 years of measured natural profiles for a nearby beach 

(Castricum, see Figure 2).  The measured RMS profile steepness at Castricum for these years 

varied between 1:17 and 1:43 and was on average 1:33. 

3. The model uncertainty is assessed by doing a large number of sensitivity calculations with the 

2DH process based morphological model with different model settings and schematization 

choices such as wave seeding, spin-up effects, beach heads and tidal asymmetry (Kroon et al., 

2015). The model uncertainty includes contributions of uncertainty of other components in the 

model chain (i.e. SWAN, CERC, UNIBEST TC) however it does not claim to be complete. The 

tested range varied between a variation in volume losses with a factor 0.5 to 2.0. 

4. The calibration uncertainty is based on an estimate of the uncertainty in the calibration data due to 

measurement errors and outliers. The tested range varied between a variation in volume losses 

with a factor 0.5 to 2.0. 

 
Table 1. Summary of sources of uncertainty. 

 

Uncertainty Method to estimate range Result Data density 

Natural variability 

in wave forcing 

20 years of wave observations 

SWAN + CERC 

Relation between yearly 

average alongshore wave 

power (P) and alongshore 

bulk volume loss (V) 

20 calculations 

Variations in profile 

shape 

40 years of cross shore profile 

measurements at Castricum + 

UNIBEST 

Relation between profile 

steepness (s) and alongshore 

bulk volume loss (V) 

40 calculations 

Model uncertainty Sensitivity calculations with 2DH 

model 

Probability density function 

of alongshore bulk volume 

loss (V) 

5 * 3 calculations 

sampled into probability 

density function of (V) 

Calibration 

uncertainty 

Measurement uncertainty in 

calibration data translated to 

upper and lower limit of 

calibration parameters. 

Probability density function 

of alongshore bulk volume 

loss (V) 

3 calculations 

interpolated into 

probability density 

function of (V) 

 

Table 1 gives an overview of the derived relations and the density of the dataset. In the present 

study the probability density functions, that relate input and model uncertainty to sediment transport 

gradients, are used as sample basis to expand the dataset to train the BN. Only one variable is varied that 

means that the input data set contains no correlation between parameters.  This assumption significantly 

decreases the dimensionality of the problem but will reduce the accuracy of the uncertainty estimation. 

However, accuracy is not the major purpose of this paper, i.e. exploring the concept of BNs in 

morphological uncertainty assessments. The resulting BN is presented in Figure 3. The histograms show 

the probability distributions for each variable, based on the training dataset, and the arrows show the 

dependencies as defined in the network setup. Figure 3 shows the prior probability distributions, being 

solely based on the training dataset. When additional evidence for one or more variables is introduced, 

posterior probability distributions are presented. This will be shown in Section 4.1. 
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Figure 3: Bayesian Network for uncertainty propagation in process based morphological modeling. 

 

2.5 Face validity 

 

The aggregation of training data is inherently accompanied by some loss of accuracy.  A common first test 

for Bayesian Networks is a face validity check. The network is said to be face valid if the response of the 

model is in agreement with the expectations of an expert and or the input data (Den Heijer, 2013;  

Pitchforth, 2013). For instance one would expect that the likelihood of a high bulk volume loss increases 

for the observation high wave energy.  

Face validity is only a limited test of the skill of a network however in data poor environments it is 

often the one of the few methods available.  

 

2.6 Bias, skill and Log-likelihood ratio 

 

The prediction skill of the model can be quantified using linear regression, in the shape of �̂� = 𝛼 + 𝛽�̂�, to e

stimate the relation between predictions and observations. In which the regression parameters α and β are a 

measure for the bias of the prediction (Den Heijer, 2013). The skill is than determined as the normalized ro

ot mean square error of the regression (�̂�𝑖): 

 

𝑠 = 1 −
∑ 𝜎𝑥,𝑖

2 [𝑦𝑖−�̂�𝑖]2𝐼
𝑖=1

∑ 𝜎𝑥,𝑖
2 [𝑦𝑖]2𝐼

𝑖=1

                (2) 

 

In which the variance  𝜎𝑥,𝑖
2 = ∑ 𝑝(𝐹𝑖|𝑂𝑗)[𝐷𝑗 − �̂�𝑖]

2𝐼
𝑖=1  and the Bayesian mean value �̂�𝑖 =

∑ 𝑝(𝐹𝑖|𝑂𝑗)𝐷𝑗
𝐼
𝑖=1 . 

The log-likelihood ratio is used to indicate the skill of the updated probability distributions by compar

ison of the posterior likelihood of an observation with the probability of the forecast of that observation.  T

his is mathematically written as: 
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   𝐿𝐿𝑗 =  𝑙𝑜𝑔[𝑝(𝐹𝑖|𝑂𝑗)]
𝐹𝑖=𝑂𝑗

− 𝑙𝑜𝑔[𝑝(𝐹𝑖)]𝐹𝑖=𝑂𝑗
              (3) 

 

The first term on the right is the posterior probability of forecast Fi given observation Oj and the secon

d term is the probability of forecast Fi.  If the log-likelihood ratio exceeds 0 the posterior distribution is an i

mprovement of the prediction. If the log-likelihood ratio is less than 0 this means the posterior likelihood is

 lower than the prior likelihood.  

 

 

3. Evidence 

 

3.1 HBD observations 

 

The constructed Bayesian Network trained with model data is compared to observed losses in the HBD 

project area (so called evidence). The evidence used to test the BN is derived from one year of cross 

shore profile observations at the HBD. The considered definition for the alongshore wave power, 

profile steepness and volume loss are described in the sections below. Figure 4 presents the evide

nce used for model testing and updating. 

 

 
Figure 4: Observations of alongshore wave power (top), RMS profile steepness (middle) and volume loss (bottom) in t

he first year after construction of the HBD. 

 

 Alongshore wave power 3.1.1

 

To combine the effect of wave height, wave direction and wave power the observed wave height at measur

ement station IJmuiden Munitiestortplaats (MUN), Figure 2, are expressed as the directional alongshore wa

ve power available for sediment transport (de Schipper, 2013).  

The first year after construction is dominated by high waves from the southwest, increasing the long te

rm average net transport potential approximately 2.5 times.    
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 Steepness observations 3.1.2

 

The alongshore transport is dominated by wave energy and angle and profile steepness is only a second 

order effect according to Mil-Homens (2016). Nevertheless the same study shows that the alongshore 

transport  has a very high correlation with the root mean square downward slope. The RMS slope is here 

defined as the seaward facing part of the slope on which wave breaking can occur (grey line in Figure 5), 

and is  calculated as: 

 

srms = √
∑ si

2N
i=0

N
                 (3) 

 

  Where si are the discrete slope values between each (uniform spaced) bathymetry point of the 

active profile. The RMS profile steepness accounts for local increase in profile steepness due to the 

presence of nearshore sandbars.  

 

 
Figure 5: Definition of RMS profile steepness as the seaward facing part of the slope on which wave breaking can occu

r, indicated with the grey dashed line. 

 

 Bulk volume loss 3.1.3

 

The bulk volume loss for each transect is defined as the volume loss per meter of the active profile from -7 

m+NAP to the dune foot at 3 m+NAP.  

The observed net sediment loss in alongshore direction in the first year after construction of the 

HBD was approximately 3x higher than the local sediment gradient before nourishment. 

 

3.2 Evidence selection 

 

To make a fair test of the model performance several transects around the transition from erosive to 

accretive coast are discarded. At a certain location to the north and the south of the curved coastline of the 

HBD the eroding trend changes to an accretive trend. The model does not predict the location of this 

transition exact and as a consequence the sign of the predicted volume change can be opposed to that of the 

observation. The BN does not include any information on coastline orientation or gradient. Therefore it is 

felt that including transects close to these transition locations would penalize the model too strong.   

 

 

4. Results 

 

4.1 Face validity 

 

Once the Bayesian Network is constructed the first step is to check its face validity. With respect to wave p

ower one would expect a valid model to display higher sediment losses in case of a high wave power, irres

pective of the wave direction since we are dealing with a coastal outcrop. The upper panel of Figure 6 show

s that in case of high waves with a Northwestern direction the peak of the probability density distribution is

 indeed increased from approximately 0.8 to 1.2 and that the Bayesian mean changes from 1.6 to 2.0. 

On a gentle slope waves break over a wider region with less intensity reducing the total alongshore s

ediment transport compared to a steep slope in which the same amount of energy is dissipated over a much 

smaller zone. So a valid model would predict lower sediment losses for more gentle profiles. In the lower p

anel of Figure 6 the network is conditioned for observations of profile steepness. It shows that the likelihoo

d of high volume loss is reduced in case of a gentle profile steepness of approximately 1:40. When compari
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ng prior and posterior volume loss in Figure 6 it can be seen that the peak remains at the same location but 

the weight of the distribution is shifted from a Bayesian mean of approximately 1.6 to 1.4.  

 

   

  

  

   

  

 
Figure 6: Face validity for gentle sloping profile (left) and high waves from the NW (right). 

 

4.2 Bias and skill 

 

The observations of the first year after construction of the HBD can be used to condition the network. The r
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elatively high SW alongshore wave power, relatively steep slope can be the cause of the high observed relat

ive volume loss. However, a high relative volume loss can also indicate a bias in the predicted volume loss

es.  

The first year observations for the transects indicate a model bias with linear regression parameters  α 

= 0.9 and β=1.7. This means that the BN underestimates the volume loss and that this underestimation incr

eases for higher volume losses.  The regression model skill is 0.9, this means that the error is relatively sma

ll compared to the regression estimate. 

In addition to the bias and regression skill the log-likelihood is determined. The log-likelihood test the

 skill of the prediction simultaneously with the skill of the uncertainty prediction. The log-likelihood values

 are determined for the likelihood of the observations given the wave power observation, given the profile s

teepness observation and given both observations. The log-likelihood values are summarized in Table 2. Th

e log-likelihood values are low due to the significant prediction bias. However, positive values indicate that

 the observations increase the probability of the observed bulk volume loss.  

The log-likelihood given the profile steepness observation is in general much higher than the log-likel

ihood given the wave power observation. This means that the model expects a stronger increase in bulk vol

ume loss due to steep profiles than due to increase in wave power. This is an interesting notion since data a

nalysis shows that the correlation in the observations is much stronger between wave power and bulk volu

me loss than profile steepness and bulk volume loss.  

 
Table 2. Log-likelihood values. 

 
 LLWave power LLSteepness LLWave power+Steepness 

Observations averaged over transects 0.07 0.25 0.32 

Transect 3 0.03 0.02 0.08 

Transect 4 0.02 0.00 0.04 

Transect 7 0.01 0.44 0.46 

Transect 8 0.03 0.42 0.44 

Transect 10 0.02 0.29 0.31 

Transect 11 0.02 -0.01 0.04 

 

4.3 Update Network 

 

In Figure 7 the network is conditioned with the average of the observations in time and space (upper panel

s). The lower panels of Figure 7 show the posterior distribution of the free nodes model uncertainty and cal

ibration uncertainty.  The peak of both distributions is shifted right, indicating a model underestimation, an

d the width is increased, indicating less certainty. Decrease of certainty is caused by contradicting observati

ons or, in this case, by observations with low prior probabilities. If observations would be very close to the 

most probable observations, the posterior distributions would become more narrow. In this case if all obser

vations would fall within the bin with the highest probability the standard deviation of the relative bulk vol

ume loss would decrease with 50% from 1.4 to 0.7. 
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Figure 7: Update of network with first year of observed values (upper panels) and adjusted free nodes (lower panels). 

 

 

5. Discussion 

 

5.1 Forecast update 

 

One of the possible applications of BNs in long term morphology is that of forecast updating. As the observ

ed bulk sediment losses in the first year after construction appear to be significantly higher than the predict

ed sediment losses a logical question of a responsible authority or private party would be “can we expect hi

gher losses than expected for future maintenance as well?”. 

The updated BN can serve to answer this question.  In Figure 8 the posterior distribution of the sand

 loss is presented after adoption of the model and calibration probabilities given the observations of the first

 year (lower panel of Figure 7). Ideally the posterior distribution becomes more narrow indicating a higher 

certainty after updating of the network. In this case the opposite is true, the certainty has reduced after upda

ting the network, most likely caused by the underlying assumptions of the model. 

The updating process basically tells us that we know less about the sediment loss mechanisms than we anti

cipated in advance (before the analysis of the collected data). Nevertheless, the shift of the peak of the distr

ibution from approximately 1.2 to 2 does give an answer to the question posed. It is expected that future los

ses will be higher than the prior forecast as well, however care is advised in the interpretation of these resul

ts since the certainty has decreased.  

Figure 8: Prior and posterior probability density distribution for the relative bulk sediment loss after updating of model 

and calibration uncertainty in the BN. 
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5.2 Full systemic translation of uncertainties 

 

Chapter 4 presents a successful transfer of uncertainty in model inputs and model instruments to a 

prediction of a coastal state indicator. The most important question that remains is how can the resulting 

uncertainty bandwidth be validated. Given that an observation is always only one realization of many 

possible observations.  

The next step is to explore other concepts for probabilistic assessments such as amongst others 

ensemble modeling and Kalman filtering. If a BN approach seems most viable in comparison to these 

methods, further validation is required. For this a more complete model data set with less bias and which 

includes joint probabilities need be generated for model training. Additionally a larger validation data-set 

with more observations is essential.  

 

 

6. Conclusions 

 

This paper investigates the use of Bayesian networks for a systemic approach of uncertainty assessments in 

long term morphological predictions on a decadal scale, as one of many possible concepts for probabilistic 

assessments. For this purpose a simple BN was set up that included uncertainties in wave forcing, profile 

steepness, model uncertainty and calibration uncertainty to an uncertainty bandwidth around the output 

parameter of choice; bulk sediment volume loss in alongshore direction. The BN is neither complete, in 

terms of sources of uncertainty, nor perfect, in terms of forecasting volume loss, but is suitable to explore 

the BN concept for morphological modelling purposes. 

The use of a BN is inevitably accompanied by loss of detail. Nevertheless logical tests show the mode

l responds as expected, and can be said to be face valid. Positive log-

likelihood values tell us that the network exhibits a similar response to forcing and steepness as is containe

d in the field observations. That is, the likelihood of the observed bulk volume loss is increased by the obse

rvations of wave forcing and profile steepness.  The model does have a significant bias, however, validatio

n of the predictive value was not the purpose of the work presented in this paper. The BN approach allows f

or the use of evidence to update the model (uncertainty) and to adjust a forecast accordingly. Whether this a

djusted forecast is an improvement was not tested here. 

We have shown that even with a limited number of calculations a face valid BN that displays a similar

 response to field observations can be obtained. The BN has shown to have the potential to transfer uncertai

nties of different sources to the required coastal state indicator. At this stage it is not possible to make any s

tatements on the quality of the forecast. For that purpose it is necessary to generate a training data set in wh

ich multiple sources of uncertainty are varied simultaneously.  However, the major challenge remains the v

alidation of the predicted uncertainty bandwidth.  

The adjusted forecast for the life-time of the maintenance buffer helps the responsible contractors 

and government authorities with the planning of the future nourishments. Most importantly, we have shown 

that updating of the forecast is theoretically possible without additional computationally expensive 

hindcasts. That is, under the condition that the observations lie within the bounds of the training dataset 

since a BN cannot extrapolate.  
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