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Abstract 
 
Field observations of bedform response to combined wave-current flows were obtained within the surf zone along the 
Delfland coast, The Netherlands, as part of the MEGAPEX Field Experiment in the fall of 2014. Fine scale seafloor 
topography was observed with a rotating pencil beam sonar along with co-located observations of waves and currents. 
New methods for sonar processing were implemented to find fluid-sediment boundaries, quantify bedform geometry, 
and estimate bedform migration rates. Observed bedform geometries with wavelengths ranging from 0.14 to 2.5 m and 
migration rates between 0 and 3 cm/min are strongly influenced by variations in the flow field due to the spring-neap 
tidal cycle as well as forcing from several storm events. Results suggest that the combined effects of storm waves and 
mean currents most strongly influence small scale morphodynamic behaviors. 
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1. Introduction 
 
In coastal environments small scale bed roughness (e.g. sand ripples) can have a significant influence on 
local hydrodynamics (Traykovski et al., 1999). In the nearshore, waves, tidal currents, river currents, storm 
surge, and alongshore currents can each contribute significantly to local morphodynamics. In particular, a 
nonlinear combination of waves and currents can strongly influence bedform geometries and sediment 
transport (Lacy et al., 2007). Many field and laboratory observations of bedform evolution have been made 
under wave dominated conditions (see Soulsby et al., 2005); however, far fewer have been made under 
combined wave-current flows (e.g. Li and Amos, 1998; Gallagher et al., 1998; Lacy et al., 2007; Larsen et 

al., 2015). Significant differences exist between current generated bedforms and those generated by waves 
(Fredsøe and Deigaard, 1992), and so parameterizing roughness in combined flows using results from 
only-wave or only-current conditions may lead to misrepresentation of sediment transport flux estimates in 
morphologic modeling. In order to better predict the effects of bedforms on larger scale sediment transport 
patterns, it is important to improve understanding hydrodynamic forcing drives the evolution of small scale 
coastal morphology, and the influence that combined flows have upon these changes.  
 
Surf zone observations of wave and current induced bedform formation and migration during spring-neap 
tidal variations and the passing of several storms were made on the Delfland coast of The Netherlands. 
Data were collected at the Sand Engine as a part of the MEGA-Perturbation EXperiment (MEGAPEX) in 
the fall of 2014. Since the installment of the 20 million cubic meter sand mega-nourishment in 2011, 
nearshore morphology has dramatically changed shape; in 2011 the Sand Engine extended 2 km in the 
alongshore and 1 km into the North Sea, and by 2014 it stretched to 4.5 km alongshore and contracted to 
700 m seaward (Stive, et al. 2013; Radermacher, et al. 2017).  
 
Our research focus is on fine scale spatial and temporal resolution of seafloor morphology that respond to 
the combined influence of storm waves and strong currents in the nearshore, and forms one of few 
observational data sets of bedforms under combined wave-current flows.   
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2. Methods 
 
2.1. Instrumentation 
 
Local small scale morphology and hydrodynamics were observed just seaward of the low tide shoreline at 

the tip of the Sand Engine (Figure 1). Seafloor topography was obtained with a stationary sweeping and 

incrementallyrotating 1 MHz Imagenex 881a pencil beam sonar with a 3 m diameter footprint, sampled 

every 20 minutes with a 1.4° sweep step and a 2.4° rotation step from 26 Sept. to 23 Oct. 2014 (day of year 

269-296). The vertical profile of horizontal currents measured using a downward looking high resolution 

acoustic Doppler current profiler (ADCP) positioned ~0.4 m above the bottom boundary and sampled at 4 

Hz in 20 minute bursts every hour. The mean low water depth was -0.3 m NAP (Normaal Amsterdams 

Peil) and the median sediment grain size was 350 µm. Generally, the tidal range was approximately 1.5 m. 

These observations were collected just seaward of the shore break.  
 

 
 
Figure 1. Sampling location and instrument set up. a) Sand Engine mega-nourishment, North is toward the positive y-
axis, East is toward the positive x-axis. b) Close-up showing sampling location marked by white circle. c) Schematic 

showing instrument setup; upper instrument is an Imagenex pencil beam sonar (located 1 m from the boundary); lower 

instrument is a downward looking high resolution ADCP (located 0.4 m from the boundary). 

 
2.2. Morphologic Statistics 
 
Statics of bedform wavelength (λ), height (η), direction (ϕ), migration rate (Vmig), and migration direction 

(ϕmig) are determined through analysis of sonar return data. These statistics can be determined using 

processed bathymetries found through analysis of the sonar intensity data for every sonar sweep (e.g. 

Figure 2).  
 

 
 
Figure 2. Ripple profile at peak of storm showing wavelength of 2 m and height of 25 cm (Julian day 295.05 for 
reference to time series in Figure 4). Image color scale is intensity of acoustic return, where reds are high intensity and 
blues are low intensity. Bottom return is indicated by the dark red line signal. The sonar head is located at the top 
center of the image. The white circles are the result of the WMS bottom finding method and the white triangles are the 
result of the BDI bottom finding method. Scale bars are shown in lower left hand corner. 

0.5 m 
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2.2.1. Bottom Finding 
Bottom position within each sonar dataset was found by identifying the high intensity return region for 
each sonar ping using two methods. The first is a weighted mean sum (WMS) method, which works well 
for return data with high grazing angles (data within ~30° of the sonar nadar). The second is a bearing 
direction indicator (BDI) method, which works well for intensity returns at low grazing angles. WMS is 
applied to each sonar ping return time series and BDI is applied considering every sonar ping return time 
series in an entire sonar sweep (see Figure 2). The sweep is composed of many sonar pings, each 
originating from the sonar head (Figure 2). This assumes that the acoustic return for each ping within a 
sweep is the same with respect to the relative time of the return pulse. Using estimates of sound speed and 
ping angle, return time, t, can be transformed into a distance from the sonar head, so within each sweep the 
coordinate system is (s, z), where s is the horizontal distance away from the sonar head, and z is the vertical 
distance away from the sonar head. A sonar ping return time series for any given direction is henceforth 
referred to as an individual beam.   
 
The WMS method is defined by a summation over time of return along an individual beam, 
 

 
 
where, nt is the acoustic return time along any beam, n, from the sonar head to the extent of the collection 
(somewhere below the boundary return), and β is a weighting factor, set to 10 (SeaBeam, 2000). The 
location of the highest WMS for each beam is the (s, z) location of the bed. 
 
The BDI method assumes that every sweep of the pencil beam sonar is analogous to one pulse from a 
multi-beam sonar. At low grazing angles, multiple beams in a sweep for a given time, t, will capture a 
return from the same piece of boundary, especially if there are bedforms present. By combining the return 
information from all beams gives a better estimation of the location of the bed. In essence, the BDI method 
takes into account the intensity peaks of all beams in a given sweep for some return time. Each peak with 
intensity greater than a given noise threshold are fit with a 3-5 point parabola. Within a given sweep, at 
locations where the return signal is interacting with the boundary at a low grazing angle, there will be two 
parabolic fits to the signal return, one for the +s direction from the sonar head and one for the -s direction. 
In the ideal case the center peak in both directions will have the strongest intensity return. The peak of the 
fitted parabola in Cartesian coordinates is the (s, z) location of the bed (SeaBeam, 2000).  
 
After all (s, z) bed locations are determined using both WMS and BDI, the respective sweeps are rotated in 
a horizontal plane around the sonar head to determine the relative (x, y, z) position rendering a local 
bathymetric map for each sonar run.  
 
2.2.2. Estimating Bedform Geometry and Migration Rates 
From the 2D local bathymetry maps, the dominant ripple wavelengths, heights, and orientations are 
determined with 2D spatial spectral analysis (Maier and Hay, 2009; Becker et al., 2007). The 2D spatial 
spectra have axes of wavenumber, kx and ky (1/m), and energy density, S (m4). The location of the dominant 
peaks in the spectra indicate the associated bedform wave number, where bedform wavelength, orientation, 
and height are defined, respectively.  
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The calculation of bedform height, η, is analogous to a significant ocean wave height calculation from 

temporal spectral analysis (Traykovski, 2007; Penko, et al., 2016). Figure 3 shows three example 

bathymetries and their corresponding 2D spectra.  
 

 
Figure 3. Bathymetry maps (a-f) and 2D spectra of a-c (h-j) and 2D cross correlations between a-d, b-e, and c-f (k-m). 

Orientation of image is –y directed onshore, +x directed towards the NE, -x directed toward the SW as seen in Figure 

1. (a-f) Local bathymetry maps found using the WMS and BDI methods. (h-j) 2D spectra of bathymetries a-c, 

respectively. Orientation of lobes shows orientation of bedforms, and position of lobe corresponds to bedform 

wavenumber. (k-m) 2D cross correlation between bathymetric pairs. The location of peak correlation corresponds to 

the magnitude and direction of bedform migration between bathymetric pairs. Ex: Panel b) has a wavelength of 1.1 m, 

orientation of 45° from shore normal to the NE; migration distance in a 20 minute period between image pairs is 7 cm, 

which corresponds to a migration rate of 0.35 cm/min; migration direction is 80° from shore normal to the NE. 
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To find migration rates and migration directions a 2D cross correlation was used. The 2D cross correlation, 
ρxy, is defined as 
 

 
where, x and y indicate the subsequent bathymetries in time that are being compared spatially, µ is the 
mean, and σ is the standard deviation (Bendat and Piersol, 2010). From the maxima (xm, ym) in the 2D cross 
correlation, the migration rate and migration direction can be found, respectively, by 
 

 
respectively, where ts is the time between the subsequent bathymetry pair. Figure 3 shows three example 
bathymetry pairs and their corresponding 2D cross correlation. 
 
2.3. Hydrodynamic Statistics 
 
Hydrodynamic statistics were calculated using measured velocity components from the ADCP. The current 
velocity, U, and direction, ϕc, were found, respectively, by  

 
where u and v are the horizontal components of velocity and the overbar represents a 10 minute mean. By 
removing the mean current,  

 
the orbital velocity, uo, is calculated using the root mean square velocity as  

 
and the direction of the waves, ϕw, is defined with 

 
3. Results and Discussion 

 
3.1 Hydrodynamics 
 
Bedform geometry and orientation is a result of the hydrodynamic forcing imposed upon the boundary. 
Time series of bedform wavelength, orientation, migration rate, and migration direction are shown in 
Figure 4d and 4e, along with time series of water depths (4a), mean current magnitude (4b), and rms orbital 
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velocities (4c). The variability in hydrodynamic forcing drives the bedform geometry and migration 

patterns. The color scale represents flow direction, bedform orientation, or bedform migration direction. 

The magnitude and direction of the current indicate that the mean current is highly dominated by tides. The 

predominant tidal orientation on the Delfland coast is shore parallel, with flood tides directed toward the 

NE and ebb tides toward the SW (see Figure 1 for reference). The magnitude of the current during flood 

tide is generally stronger than during ebb tide; however, with additional storm forcing the wave-driven 

flow exceeds the tidal flow in the inner surf zone. The time series goes through 2 spring-neap cycles and 

has 4 storm events (indicated in Figure 5). Spring flood tidal currents are stronger than those during neap.  

 

 
 
Figure 4. Time series of hydrodynamic and bedform statistics colored by flow direction or bedform orientation as 

indicated by the color wheel (white is directed onshore, dark red and blue are alongshore, with red flowing or oriented 

toward the NE and blue toward the SW as seen in Figure 1). a) depth. b) current magnitude. c) wave orbital velocity. d) 

bedform wavelength. e) bedform migration rate. 
 
At the Sand Engine, wave forcing is driven by frequent offshore storms lasting typically 1-3 days. The 

magnitude of the wave orbital velocity at the sampling location within the inner surf zone (Figure 4c) 

increases with the onset of storms but is tidally modulated due to wave breaking on the offshore sandbar at 

lower stands of the tide. In general, waves came from the NW during the experiment and strike the coast at 

an angle driving a longshore current to the SE.  
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3.2 Bedform Geometry and Mobility in Response to Waves and Currents 
 
Bedform wavelengths (Figure 4d) and migration rates (Figure 4e) are influenced by both mean currents and 

waves. During spring tide (day of year 270-275) bedform wavelengths and migration rates are strongly 

influenced by large tidal currents, increasing and decreasing as a function of current magnitude. At day of 

year 278, 281, 283, and 293, the bedform wavelengths and migration rates increase during the passing of a 

storm. Bedform migration direction is qualitatively influenced by the direction of the current. Bedform 

migration direction is influenced by both wave direction and current direction with a bias toward the 

direction of the currents. Bedform orientation shows similar patterns, but is not as strongly influenced by 

current direction. The largest and most mobile bedforms occur when both the waves and currents are 

strongly contributing to the hydrodynamic forcing (as seen between day of year 293 and 296). 

 
Figure 5. Time series of hydrodynamic forcing ratio and corresponding histograms of bedform wavelength for each 

forcing segment. Each histogram accounts for only those bedforms occurring within that highlighted segment; however 

distribution probability is relative to all observations, and hence the probability of occurrence, p, for any individual 

wavelength within each distribution is small. Spring tide, neap tide and periods with additional storm forcing are 

labeled above the top panel. a) Time series of depth. b) Time series of ratio of current velocity and wave orbital 

velocity colored in segments by periods of spring tide and neap tide with or without added storm forcing. Dashed lines 

indicate thresholds for wave dominant, combined wave-current dominant, and current dominant forcing as described in 

the text. c) Time series of bedform wavelength colored in same way as panel b. A-H are corresponding histograms of 

bedform wavelength for each colored and labeled segment as seen in panel b and c. 
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To examine the relationship between bedform geometry shifts and variability in hydrodynamics, the time 
series is segmented based upon forcing conditions, and a histogram of bedform wavelength is computed for 
each segment (Figure 5). Figure 5b shows a ratio of current magnitude to wave orbital velocity, analogous 
to Li and Amos (1998), where bedforms are thought to be wave formed when U/uo ≤ 0.5, combined wave 
current formed when 0.5<U/uo ≤ 1 or current formed when U/uo > 1. Segments A and E show spring tide 
without storm forcing, B and G show neap tide without storm forcing, C and F show neap tide with storm 
forcing, and D and H show spring tide with storm forcing. 
 
When comparing periods of spring tide to neap tide without storm forcing, spring tide histograms A and E 
show an occurrence of larger wavelength bedforms (0.8 m or greater) that are not evident during neap tide 
without storms (B and G). When viewing histogram A in light of Figure 5b and 5c, it is evident that these 
larger wavelength bedforms were formed with the onset of strong currents. During neap tide the flood tide 
current is much weaker than during spring tide and does not likely generate these large wavelength 
bedforms. Even though segment B shows data with U/uo > 1, which would indicate current induced 
bedforms, the magnitude of the current and orbital velocities during this period are low, suggesting that in 
this case current dominance erodes existing bedforms rather than forms new bedforms. Without storms, 
bedforms formed during neap tide and in-between periods of strong current during spring tide are wave 
induced (U/uo ≤ 0.5).  
 

 
Figure 6. Histograms of bedform wavelength and migration rates based upon legend data segmentations. Within each 
panel, each histogram distribution is relative to itself and not to the entire dataset, meaning in panels a) and d) the 
distribution of bedform wavelength and migration rate is accounting for instances occurring within only spring tide or 
only neap tide. The percent of the dataset that falls within spring tide or neap tide is labeled in the upper right hand 
corner of d) for both panels. b) and e) Histograms of bedform wavelength and migration rate, respectively, segmented 
by periods of calm and storm. The percent of the dataset that falls within calm and storm periods are labeled in the 
upper right hand corner of e) for both panels. c) and f) Histograms of bedform wavelength and migration rate, 
respectively, segmented by periods of wave dominated flow and combined flow. The percent of the dataset that falls 
within wave dominated and combined flow conditions is labeled in the upper right hand corner of f) for both panels. 
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When storms do occur during neap tidal periods (C and F), there are a few instances of larger wavelength 
bedforms; however during these periods U/uo is generally ≤ 0.5, suggesting that these wave formed 
bedforms as well. The wavelength of these bedforms is at times longer due to the larger storm waves. The 
largest wavelength and most dynamic bedforms occur during spring tide with the onset of a storm (D and 
H). The hydrodynamic forcing is greatest during the D and H segments (Figure 4b and 4c), and these 
bedforms were at times wave induced, current induced, or combined wave-current induced, with the largest 
bedforms being formed during periods of combined wave-current forcing (Figure 5b). 
 
Observations of bedform geometry and mobility at the Sand Engine are observed to be variable based on 
the phase of the tide as well as the presence of a storm. Histograms of bedform wavelength and migration 
rates are segmented into observations based upon spring tide and neap tide (Figure 6a and 6d), calm and 
storm conditions (Figure 6b and 6e), and wave dominant (U/uo ≤ 0.5) and current or combined flow 
dominant (U/uo > 0.5) (Figure 6c and 6f). These histograms are relative to only the data in the respective 
segment, rather than the entire set of observations as was the case for the histograms in Figure 5. The 
percentage of data falling into each segment is marked in the upper right hand corner of the right hand 
panels in Figure 6. These 12 histograms summarize factors driving bedform transformation and mobility 
during the deployment.  
 
As bedforms get larger they can have a progressively greater influence on the local hydrodynamics. With 
the addition of increased bedform migration rates that move more sediment, the effect on coastal change 
could be more important. This suggests that the occurrence of larger wavelength bedforms (�	≥ 0.8 m) with 
increased migration rates (Vmig ≥ 1 cm/min) may be disproportionally important to the net transport. 
 
Although there were many observed occurrences of smaller wavelength bedforms (�	< 0.8 m) during all 
tides, there were slightly (10%) more, larger wavelength bedforms (�	≥ 0.8 m) during spring tides (Figure 
6a). A similar variation is observed in the migration rate, with 5% increased occurrence of larger migration 
rates during spring tide compared to neap tide.  
 
During the experiment storm conditions were present for 27% of the dataset. Under storm forcing, there is 
a 20% increase in occurrence of larger wavelength bedforms and an 8% increase in occurrence of higher 
bedform migration rates (Figure 6b and 6e) compared to calm conditions. Although during spring and neap 
tidal periods two storms of similar magnitude occurred, the spring tide bedforms had a higher frequency of 
occurrence of larger wavelength bedforms than neap tide (Figure 6a), a result that can be attributed to 
strong tidal currents of spring tide (as seen in Figure 4) in conjunction with additional storm forcing. 
Spring tides with the addition of storm waves had a 42% increase in occurrence of larger wavelength 
bedforms and a 5% increase of higher migration rates when compared to the rest of the dataset (Figure 5, 
periods D and H). 
 
Histograms shown in Figure 6c and 6f show that combined flows are responsible for a 14% increase in 
occurrence of larger wavelength bedforms and a 13% increase in occurrence of higher migration rates 
when compared to the distributions of wave dominant flows only.  
 
The influence of combined flows (0.5<U/uo ≤ 1) on bedform wavelength and migration rates is shown in 
Figure 7. Bedforms with wavelengths greater than 0.8 m can occur during wave dominant, combined 
wave-current dominant, and current dominant forcing conditions with variable migration rates (from no 
migration to high migration). However, the largest observed migration rates occurred during periods of 
combined flows and slightly current dominated flows (it should be noted that there are a few occurrences 
of large migration rates in wave dominant conditions, possibly due to wave asymmetries when waves get 
large). Within combined flow conditions, as migration rates increase, bedform wavelengths are also 
generally larger. These large and rapidly migrating bedforms are likely to be transporting the most sand per 
unit time and are linked to flow conditions characterized by strong tidal currents coincident with storm 
waves (Figure 5).  
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Figure 7. Scatter plot of the ratio of current velocity to orbital velocity plotted against bedform migration rate and 

colored by bedform wavelength. Dashed lines indicate cutoffs for defined wave, wave-current, and current dominant 

conditions. 
 
 
4. Conclusion 
 
Observations of local hydrodynamics and morphology indicate that both wave and mean current forcing 
contribute to the transformation and migration of nearshore bedforms during both calm and storm 
conditions. At the Sand Engine, bedform dynamics are strongly tidally regulated and greatly influenced by 
additional forcing from storms.  
 
With the presence of a storm and in the absence of strong spring tidal currents, bedforms are generally 
wave dominated. Wave dominated bedforms can become large depending upon the size of the waves. 
Additionally, bedforms are shown to become purely current driven during spring flood tides in the absence 
of an imposed storm. Within these field observations, the largest and fastest moving bedforms occurred 
during combined flows during spring tides and storm waves, suggesting that combined forcing events may 
have the greatest influence on morphodynamics.  
 
Overall, results show that combined flows can substantially contribute to changes in nearshore 
morphology, more than with wave or current forcing alone. Often, sediment transport models account for 
transport due to waves or due to currents, but not the combined effects of wave-current forcing. This 
research suggests that combined flow effects are important to bedform geometries and migration, and 
should be considered within sediment transport models. Examination of the combined flow effects upon 
bedform formation and influence upon sediment transport flux as well as its contribution to local coastal 
change is the subject of ongoing research.  
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