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Abstract 
 
On the base of data of laboratory and field experiments, the regularities in changes in the relative limit height of 
breaking waves (the breaking index) from peculiarities of nonlinear wave transformations and type of wave breaking 
were investigated. It is shown that the value of the breaking index depends on the relative part of the wave energy in 
the frequency range of the second nonlinear harmonic. For spilling breaking waves this part is more than 35% and the 
breaking index can be taken as a constant equal to 0.6. For plunging breaking waves this part of the energy is less than 
35% and the breaking index increases with increasing energy in the frequency range of the second harmonic. It is 
revealed that the breaking index depends on the phase shift between the first and second nonlinear harmonic (biphase). 
The empirical dependences of the breaking index on the parameters of nonlinear transformation of waves are proposed. 
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1. Introduction 
 
Wave breaking is the most visible process of wave transformation when the waves approaching to a coast. 
The main reason is decreasing of water depth and increasing of wave energy in decreasing water volume. 
During breaking a wave energy is realized in a surf zone influencing on a sediments transport and on the 
changes of coastal line and bottom relief. The depth-induced wave breaking criteria which are used in 
modern numerical and engineering models are usually based on classical dependence between height of 
breaking wave (H) and depth of water (h) in breaking point: 
 

H= γh,               (1) 
 
where γ – breaking index is adjustable constant and γ=0.8 is suitable for most wave breaking cases (Battjes, 
Janssen, 1978).  The laboratory and field experimental data testify the wide range of γ (from 0.4 up to 1.2) 
and its dependence on bottom slope and wave steepness through Iribarren number (surf similarity 
parameter) (Battjes, 1974): 
 tgαIr , H L               (2) 
 
where tg α is the inclination of the bottom, H is the characteristic height (e.g., the maximum or significant 
wave height at the breaking point), and L is the characteristic wavelength (in deep water or local, at the 
breaking point). As well, with an increase in the surf similarity parameter, the limit relative wave height on 
the whole also increases, but this dependence has a quite wide scatter and is observed only as a trend 
(Battjes, 1974). It has been noted that formula (1) best describes wave breaking over a gently sloping 
bottom and is hardly satisfied at all for waves propagating over a steep bottom. This may be related to the 
significant influence of reflection on the height of breaking waves (Chella, et al., 2015; Rattanapitikon, 
Vivattanasirisak, 2002). 
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Dependence (1) is applied in many modern models for waves in the coastal zone to describe their energy 
dissipation during breaking (e.g., MIKE21, certain modifications of SWAN). 
In nature, waves are irregular; therefore, in practice, it is convenient to use criteria based on relations (1), 
but written for the significant height of waves determined from the wave spectrum as 
 
= ௦ܪ                                                                               4ඥ݉଴                                                                              (3) 
 
where 0 0 (ω) ω,m S d   S is the wave spectrum, ω - frequency. 
As a result of verifying different well-known empirical formulas for the breaking index when they use the 
height of significant waves, it has been established that its values on average will be on the order of 75% of 
the values obtained for the empirical formulas for the limit height of breaking single and regular waves 
(Kamphuis, 1991). Thus, in formula (1), instead of the height of single waves, we take the significant 
height of waves, then the value of the most frequently used breaking index with be on the order of 0.6. 
Similar estimates for breaking waves of the root mean square height (Hrms) were obtained in (Thornton, 
Guza, 1983):  

Hrms=0.42h, 
 
or, taking into account that Hs = 1.41Hrms,  

Hs = 0.59h               (4) 
 
The variability of the breaking index, in our opinion, is determined by the physical processes of nonlinear 
wave transformation above an inclined bottom, which manifest themselves differently depending on the 
bottom inclination and the initial wave steepness (e.g., Saprykina et al., 2013). This has been partially 
confirmed by the results of other researchers. For example, in (Salmon, Holthuijsen, 2015), in verifying 
formula (1) based on field data, it was noted that the size of the breaking index depends on shallow water 
conditions during wave transformation, which are determined by the parameter kh (wave number k and 
depth of water h) and the slope of the bottom. Account of these parameters in their proposed modified 
formula for the breaking index has made it possible to increase by 10--15% the accuracy of calculating of 
energy losses of breaking waves in the SWAN model. For this model, it was also noted that the 
introduction of a nonlinear correction in the form of a change in the phase shift (biphase) between multiple 
harmonics of wave motion into the formula for calculating wave energy dissipation significantly increases 
the accuracy in modeling breaking waves (Westhuysen, 2010). Unfortunately, these studies are limited to 
refining the mathematical formulas for describing wave energy dissipation; they do not study the features 
of the physical process of their transformation leading to breaking. 
The variations of γ can be explained by the distinctions of the amplitude-phase frequency structure of 
waves before its breaking due to nonlinear wave transformation. According to some laboratory and 
numerical studies, the type of wave breaking can also influence the size of the breaking index (e.g., Chen, 
Li, 2015). Earlier, we showed that the type of breaking - plunging or spilling - depends on the wave 
asymmetry determined by the relation of the amplitudes of the first and second nonlinear harmonics and 
the phase shift between them (Kuznetsov et al., 2015).  
The main purpose of this work is to explain how the depth induced breaking criteria (1) depends on the 
features of nonlinear wave transformation in coastal zone.  
 
 
2. Experiments and methods 
 
For an analysis the data of two experiments were used. A laboratory experiment on quasimonochromatic 
wave transformation above a uniform inclined bottom with a different inclination was performed in 2013 at 
the Sea Shores scientific research center in Sochi (for more details, see, e.g., Saprykina et al., 2015). 
Length of the flume is 22 m, width - 0.8 m, depth - 1 m. Waves were measured by 14 digital wire capacity-
type gauges placed along the length of an underwater  slope, synchronously with a sample rate of 25 Hz. 
Duration of each wave run was about 4 min. The type of wave breaking and the location of the wave 
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breaking point were determined visually and recorded with photo and video equipment. In cases where 
wave breaking occurred between gauges, the relation between the height of a breaking wave and the water 
depth at the breaking point was calculated for the location of the gauge nearest to the breaking point.  
A field experiment was performed in 2007 on an experimental pier at the Institute of Oceanology, 
Bulgarian Academy of Sciences, near the village of Shkorpilovtsy on the Black Sea (for more details, see, 
e.g., Saprykina et al., 2009; 2013). To record waves, 15 wire wave gauges were used: seven capacitive type 
gauges and eight resistance type gauges evenly placed along the length of the pier (250 m) at depth range 
0.5 m - 4 m. Measurements at 15 points were conducted synchronously with a sampling rate from 5 to 
20 Hz. The durations of wave records were from 20 min up to 1 hour. The bottom profile in the 
experimental area had a medium inclination of 0.024 and contained an underwater bar. 
The location of wave breaking points and the type of breaking were recorded visually and photographically. 
Depending on the wave regime, from one to three breaking lines were observed. Just like in the laboratory 
experiment, as wave breaking occurred between gauges, the relation between the height of a breaking wave 
and the water depth at the breaking point was calculated for the location of the gauge nearest to the 
breaking point.  
In addition to limit significant height of breaking waves (4) we considered steepness of breaking waves 
Hs/Lb, Lb - wavelength of breaking wave; it was calculated for the period of the spectral peak of irregular 
waves. 
We also analyzed: 
a) the coefficient of wave asymmetry with respect to the horizontal 

 3
3

ζ
σSk  ,               (5) 

and vertical 
      

3
H
3

ζ
σAs                  (6) 

 
axis, where  is the averaging operator, ζ  is the free surface elevations (wave chronograms), σ  is the 
standard deviation of the free surface elevations, and Hζ  is Hilbert transform of a wave chronogram. 
b) The ratio of the wave energy in the frequency range of the second nonlinear harmonic to the wave 
energy in the frequency range of the main harmonic, which corresponds to the frequency of the main 
spectral maximum. The boundary of splitting into frequency ranges was determined visually by the 
minimum of the spectral energy between the spectral maxima of the main and second harmonics. The 
lower boundary of the frequency range of the first harmonic was taken as 0.05 Hz, and the upper boundary 
of the frequency region of the second harmonic, 1.5 from the frequency of the second harmonic. 
c) The phase shift between the first and second nonlinear harmonics are calculated by the following 
formula (Kim, Powers, 1979): 
       1 2

1 2
1 2

Im ω , ωω , ω  arctan ,Re ω , ω
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B
B

              (7) 
 
where   1 2 1 21 2 ω ω ω ω*ω ,ω B A A A  is the bispectrum,  is the  angular frequency, and A are the complex 
Fourier amplitudes of the chronogram of free surface  elevations. The frequencies of the first and second 
harmonics were determined by the positions of the local maxima of the wave spectrum. 
 
 
3. Discussion of results 
 
According to criteria (1) waves break when their height becomes larger than the critical values. Figure 1 
shows the limit height of breaking waves as a function of their steepness. 
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Figure 1. Dependence of breaking index on wave steepness at breaking point. Circles - laboratory experiment; 

diamonds- experiment. Bold symbols correspond to waves breaking as plunging type; plain symbols, waves breaking 
as spilling type.  

On the whole, it is possible to say that the steeper the wave, the larger the breaking index (Fig. 1). However, 
in a detailed consideration, it is impossible to establish an unambiguous relationship between the wave 
steepness parameter and the breaking index or the relative wave height at the breaking point. For example, 
waves having the same steepness in the range of 0.05 < H/L < 0.065 can have difference breaking indexes: 
close to the mean (on the order of 0.6) and substantially higher that the mean. Meanwhile, for the same 
wave steepness, these waves have a different type of breaking. Laboratory modeling shows that an increase 
in wave steepness to values larger than 0.08 does not lead to increase in the breaking index. Thus, breaking 
waves do not have an unambiguous relationship between their steepness and the limit height, whereas the 
wave steepness is not a sufficient parameter to characterize the limit height of breaking waves. 
 

  
Figure 2. Dependence of breaking index on parameter of similarity to coastal zone (Iribarren number) at breaking point. 
Circles - laboratory experiment; diamonds- experiment. Bold symbols correspond to waves breaking as plunging type; 

plain symbols, waves breaking as spilling type. 
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The trend described in (Battjes, 1974) of an increase in the breaking index of individual waves with an 
increase in the Iribarren number for the breaking index of the heights of significant waves is not as obvious 
(Fig. 2). It is possible to state that two trends are observed simultaneously. The first is when the breaking 
index on average depends weakly on the Iribarren number, which is characteristic of waves breaking 
predominantly by spilling, and its deviations from 0.6 are no more than 15%. The deviations observed in 
the data may be related to an error in the positioning of the breaking point. When breaking occurred 
between to sequential wave-recording gauges, the breaking index was calculated by the data of the gauge 
nearest to the breaking point. 
The second trend is when the breaking index increases with an increasing Iribarren number. Here, large 
breaking indexes correspond to waves breaking predominantly by plunging. An increase in the breaking 
index values may not be related to the influence of the bottom inclination on wave transformation to a large 
degree, because the data of numerical modeling performed over different bottom inclinations show no 
significant differences in their values with increasing Iribarren number. Conversely, all of its values for the 
modeling data vary around 0.6. 
Increased breaking index values (greater that 0.8) may not be unambiguously related to waves reflected 
from the slope, because, as shown in (Saprykina et al., 2015), the coefficient of local wave reflection from 
shore has large values at distances on the order of the wavelength and significantly decreases at large 
distances. 

  
Figure 3. Dependence of breaking index on relative distance to shore at breaking point. Circles - laboratory experiment; 
diamonds- experiment. Bold symbols correspond to waves breaking as plunging type; plain symbols, waves breaking 

as spilling type.  
As seen in Fig. 3, large breaking indexes are observed for waves breaking at distances from shore on the 
order of the corresponding wavelength in deep water. Meanwhile, waves breaking closer to shore have a 
small breaking index.  
The wave transformation conditions depend on the relative wave height h/L. Figure 4 shows the 
dependence of a change in the relative limit height of breaking waves on the relative water depth at the 
breaking point. One can see that two different trends exist: for h/L < 0.08, the breaking index increases 
with increasing relative depth, and for h/L > 0.06, it decreases. As well, for relative depths 0.1 < h/L < 0.06, 
the widest scatter of breaking index values is observed. The discussed relative depths for the considered 
breaking waves correspond to the conditions of the weakly nonlinear-dispersive wave transformation, a 
characteristic peculiarity of which is near-resonance three-wave interactions, during which the amplitudes 
of the first and second nonlinear wave harmonics can exchange energy. As well, the amplitude of the 
second harmonic can reach values comparable to the amplitude of the first harmonic (Saprykina et al., 
2009, 2013). During nonlinear interaction between the harmonics, not only their amplitudes vary, but also 
the phase shift (biphase) between them, which depends on the stages of energy exchange between the 
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harmonics (Saprykina et al., 2017). 

 Figure 4. . Dependence of breaking index on relative water depth at breaking point. Circles - laboratory experiment; 
diamonds- experiment. Bold symbols correspond to waves breaking as plunging type; plain symbols, waves breaking 

as spilling type.  
The simultaneous existence of two trends may be related to the different influence of the two main 
processes occurring with waves during their nonlinear transformation and causing waves to break: an 
increase in the second and higher nonlinear harmonics and changes in the phase shift between them and the 
main harmonic. For example, it is possible to assume that the instability of the waveform for relative 
depths 0.1 < h/L are more affected by phase shifts, and for h/L < 0.06, it is more affected by the values of 
the amplitude of the second harmonic. For 0.06 < h/L < 0.1, both processes can have the same effect. 
Figures 1-4 shows that the different observed trends for the breaking index values are also related to the 
predominant type of breaking. Increased breaking index values are characteristic of waves breaking by 
plunging, whereas for waves of the spilling type, the breaking index on average is 0.6. The type of wave 
breaking is determined by their spectral composition and depends on the stage of wave transformation and, 
in particular, on the evolution of the second nonlinear harmonic. Let us consider how the spectral 
composition of waves affects the limit height of breaking waves.  
 

  
Figure 5. Dependence of breaking index on relative size of energy of second nonlinear harmonic at breaking point. 

Circles - laboratory experiment; diamonds- experiment. Bold symbols correspond to waves breaking as plunging type; 
plain symbols, waves breaking as spilling type. 
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Figure 5 shows the dependence of the breaking index on the size of the energy of the second harmonic, 
which is related to the size of the energy of the first harmonic. 
In the experimental data, an increase in the limit relative height of breaking waves is characteristic of 
waves in which the amplitude of the second harmonic is approximately less that 35%. For these waves, the 
breaking index increases with increasing relative amplitude of the second harmonic, which can be 
approximated for the available data, e.g., by a quadratic dependence. 
 

γ = Hs/hb = 0.6 + 3.5(E2/E1)2.              (8) 
 
For waves having relative amplitude of the second harmonic more that 35%, the breaking index does not 
increase with its growth; they are characterized by an approximately uniform distribution of the breaking 
index with respect to its mean value of 0.6. 
Note that small amplitudes of the second harmonic and an increase in the limit height of breaking waves 
with an increase in the amplitude of the second harmonic is characteristic of waves breaking predominantly 
by plunging. Large relative amplitudes of the second harmonic correspond to waves breaking by spilling. 
This completely corresponds to and once again confirms the conclusions drawn in (Kuznetsov et al., 2015). 
The size of the maximum relative energy of the second harmonic for wave transformation above an 
inclined bottom can be predicted from the steepness of waves (by the ratio of the height to the wavelength)  
on seaward boundary of the coastal zone and is inversely proportional to it according to the empirical 
dependence obtained in (Saprykina et al., 2015).  
 

  
Figure 6. Dependence of relative energy of second harmonic on wave steepness at breaking point. Circles - laboratory 

experiment; diamonds- experiment. Bold symbols correspond to waves breaking as plunging type; plain symbols, 
waves breaking as spilling type.  

Verification of this relation for the wave steepness at the breaking point according to the available data of 
field and laboratory experiments has shown that the dependence will have the same form (Fig.6): 
 

E2/E1 = 0.014/(Hs/Lb),                (9) 
 
where Hs is the height of significant waves and Lb in the wavelength at the breaking point. The empirical 
dependence of the relative energy of the second nonlinear harmonic on the wave steepness (9) is suitable 
for determining the share of energy of the second harmonic for E2/E1)< 0.35 (Fig. 6). 
Another way to account energy of second harmonic is on the base of Ursell number. According to the 
second-order approximation for a stationary Stokes wave describing weakly nonlinear dispersion waves, 
the ratio of the amplitudes of the second and first nonlinear harmonics depends on the Ursell number for 
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kh 0: 
      2

3
1

3 3 Ur,4 4 a ak
a kh             (10) 

 
where k is the wavenumber; a1, a2 are the amplitudes of the first and second harmonics; h is depth; a = H/2, 
where H is the wave height (Dingemans, 1997). The ratio of the energy of the nonlinear harmonics, which 
is equal to the ratio of the amplitudes squared, will depend quadratically on the steepness and on the Ursell 
number, respectively. 
 

  
Figure 7.  Dependence of relative energy of second harmonic on Ursell number. Circles - laboratory experiment; 

diamonds- experiment. Bold symbols correspond to waves breaking as plunging type; plain symbols, waves breaking 
as spilling type.  

Figure 7 shows the dependence of the relative energy of the second nonlinear harmonic E2/E1 on the Ursell 
number. Clearly, for small Ursell numbers (Ur < 1), the relative energy of the second nonlinear harmonic in 
the experimental data corresponds well to weakly nonlinear dispersive Stokes waves and can be 
determined by formula (10). These waves break predominantly by spilling.  
With an increase in the Ursell number and, accordingly, an increase in the influence of nonlinearity, the 
relative share of energy of the second harmonic is not described by relation (10). Such waves break 
predominantly by plunging (Fig.7). 
Thus, the limit height of a breaking wave can be determined by formula (8) if one knows the size of the 
relative amplitude of the second harmonic, which is calculated by the empirical relation for local wave 
steepness (9) of for small Ursell numbers by the relation from Stokes second-order wave theory (10). 
A different type of breaking also depends on wave asymmetry against vertical axis (Kuznetsov et al., 2015) 
and asymmetry coefficient linear depends on β - the phase shift between the first and second nonlinear 
harmonics (biphase) (Saprykina et al., 2017): 
 

As = 0.8β              (11) 
 
Figure 8 shows the dependence of the breaking index on the biphase of breaking waves. The breaking 
index increases with decreasing of biphase in general. But two main tendencies can be observed. For waves 
breaking mainly spilling type (biphase more then –π/3) the breaking index changes slightly, and for 
example, its value can be accepted to the constant which isn't depending on the biphase. And for waves 
breaking mainly plunging type (biphase less then –π/3) the breaking index increases with decreasing of the 
biphase. 
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Figure 8. Dependence of breaking index on biphase at breaking point Circles - laboratory experiment; diamonds- 

experiment. Bold symbols correspond to waves breaking as plunging type; plain symbols, waves breaking as spilling 
type.  

According to the available data, the dependence of the breaking index on the biphase for these waves  is 
approximately linear:  
 

γ = Hs/hb = 0.6 - 0.24 β,            (12) 
 
and γ = Hs/hb ≈ 0.6, if biphase is more then –π/3. This corresponds to waves breaking by spilling. So, if the 
biphase is known there is possible to define type of breaking and breaking index. 
The empirical formula for determining the biphase from the bottom inclination, depth, and local 
wavenumber was proposed, e.g., in (Saprykina et al, 2017): 
 

β = π/2Δl – π/2 ,  for Δl < 1,           (13) 
 
where Δl = (h/tg α)/Lb, h is the local water depth, tg α is the local mean bottom inclination, and Lb = 2π/(k2 - 
2k1), k1,2 are calculated from the dispersion relation of linear wave theory 2ω tanh gk kh . 
 
 
4. Conclusions 
 
As a result of analyzing the experimental data, it was established that nonlinear wave transformation 
influences the size of the breaking index, which determines the relation between the significant height of 
breaking irregular waves and the water depth at the breaking point. It depends on the relative share of the 
energy of the second nonlinear harmonic and the phase shift between the first and second nonlinear 
harmonics, which determines the wave asymmetry with respect to the vertical axis. 
If the relative share of the energy of the second nonlinear harmonic is more than 35%, then the breaking 
index on average varies insignificantly and can be taken as equal to 0.6. As well, breaking waves will be 
asymmetric with respect to the horizontal axis and actually symmetric with respect to the vertical axis (the 
phase shift is close to zero), which corresponds to predominate breaking as the spilling type.  
If the relative energy of the second nonlinear harmonic is less than 35%, then the breaking index is larger 
than 0.6 and will increase with an increase in the share of the energy in the frequency range of the second 
harmonic. As well, breaking waves will have a large asymmetry with respect to the vertical axis (the phase 
shift is negative and close to–π/2), but will be nearly symmetric with respect to the horizontal axis, which 
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corresponds to waves breaking predominantly by plunging. 
It has been  revealed that the asymmetry of breaking waves with respect to the vertical axis linearly 
depends on the phase shift between the first and second nonlinear harmonics. 
It has been shown that in breaking waves, the ratio of the amplitudes of the second and first harmonics for 
Ursell numbers smaller than 1 is proportional to the Ursell number, which corresponds to Stokes' second-
order wave theory. 
Empirical dependences for calculating the breaking index using the share of energy of the second nonlinear 
harmonic and the biphase were proposed. 
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