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Abstract 

 
We calculate both bed load and suspended load transport under cross-shore tidal currents on an intertidal zone of a 

macro-tidal beach. Our method employs the shallow-water equations coupled to an advection equation for suspended 

concentration and bed evolution equation. The physical domain including the shoreline is mapped onto fixed 

computational domain. This method allows the results to be obtained readily throughout the whole domain over long 

simulations. The morphodynamics of a plane macro-tidal flats comprising fine and medium sand is considered. Under 

cross-shore tidal currents, the convex upward profile builds up in the intertidal region; while the lower parts below the 

low tide level tend to retreat over time. The shoreward movement of sediment is more likely due to suspended-load 

rather than bed-load. We then consider an erosional formula based on linear wave theory in order to take into account 

the entrainment due to waves. The bed change with respect to this erosional term is obtained over one tidal cycle. 

Further work is under way to correctly characterise differences in wave and current effects. 

 

Key words: numerical models; shallow water; coupled hydro-morphodynamic model; coordinate transformation 

method; non-breaking long waves, tidal waves 

 

 

1. Introduction 

 

Tidal flats are characterised by varying water depths both temporally and spatially. The variations in water 

level are likely to generate specific hydrodynamics, which associate with sediment transport processes. The 

hydrodynamics are responsible for generating bed shear stresses and mobilising sediment, which can be 

advected by the flow, and may subsequently be deposited. These main hydrodynamic forcings are 

described by Eisma (1997), including tide, waves, the wind-induced circulation, the density-driven 

circulation and the drainage process. 

 Assessing how all of these processes contribute to the bed stress is complicated, especially at 

extremely shallow water depths, where the validity of the bottom shear stress approximation is 

questionable. As shown by Friedrichs and Aubrey (1996), the hydrodynamics and morphodynamics are 

interrelated. Their analytical study focused upon the dependence of flows or waves on the equilibrium 

topography, which has been confirmed numerically by Roberts et al. (2000). The simplified numerical 

model was developed to analyse interactions between hydrodynamics and sediment transport, and thus the 

possible equilibrium profiles. 

 For the intertidal zone, bed irregularities are more likely controlled long-term by the combination 

of a variety of factors, including tidal range, wave climate, sediment properties, sediment supply, bed 

gradient and tidal currents (Masselink and Short, 1993). Le Hir et al. (2000) indicated that long-term 

morphologies of intertidal flats are driven dominantly by tides. Kirby (2000) also found that over a long-

term timescale (decadal time scale), wave-dominated flats are concave-upward profile and retreating, while 

tide-dominated are convex-upward and accreting (Fig. 1). In both types of flats, tide is a crucial factor, as 

its periodic submerging and exposing on these flats defines the intertidal region. Moreover, hydrodynamics 

on tidal flats are strongly correlated with this periodic variation: onshore tidal current during rising tides 

and offshore current during falling tides. Tidal currents can be split into a cross-shore component, which 

accounts for the periodic fluctuation of mean water level of the flat, and a long-shore component, which 

depends on the large-scale circulation around the flat. On beaches subjected to large tidal ranges (>3m), the 
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induced tidal currents are even more complicated. The relative magnitude of these two components 

depends on the local geological and hydrodynamic settings. Cross-shore currents tend to be dominant 

where the tidal flat gradient is low or where the presence of a headland, spit, or breakwater reduces the 

long-shore component (Roberts et al., 2000). At these intertidal flats, the cross-shore component is usually 

considered as a dominant factor, which is responsible for the mobilisation of sediment. 

 

 

Figure 1. Equilibrium profile of tide- and wave- dominant tidal flats 

 

 Waves, either due to swell or generated by local winds, also contribute to the entrainment of 

suspended sediment on shallow tidal flats (Green and Coco, 2013). Even in sheltered areas, waves are 

seldomly negligible, as small waves can sufficiently re-suspend sediments in very shallow areas, and often 

contribute to morphological stability in the long-term (Le Hir et al., 2000). In the case of most UK tidal 

flats, wave height is insignificant compared to the tidal range, which means the waves induce a band of 

high shear stress which moves across the tidal flats with tide variation (Roberts et al., 2000). Li and Mehta 

(1997) suggested that waves contribute to sediment transport in these flats by two main mechanisms: 

raising the entrainment rate by increasing bed shear stresses, which is the advected; and fluidisation or 

liquefaction of the top layer of bed, which is then carried seawards/shorewards under gravity/wave-induced 

residual currents.  

 Over the past decade, increasing efforts have been made to investigate cross-shore morphology of 

tidal flats. Friedrichs and Aubrey (1996) assumed that the maximum bed shear stress is uniform spatially 

with uniform current speeds, and derived analytical solutions of equilibrium profiles of tidal flats where 

sediment is transported under tide- or wave-dominated regimes. The main findings were also confirmed by 

Kirby (2000) and Roberts et al. (2000) that the convex and concave shape of tidal flats are experienced at 

tide- and wave-dominated flats, respectively. Extending the numerical model of Roberts et al. (2000), 

Pritchard et al. (2002) and Pritchard and Hogg (2003a) investigated the long-term morphodynamic 

behaviour of tide-dominated mudflats under different tidal and sediment supply conditions. The main 

finding was that cross-shore accretion does not depend on the tidal range but the sediment supply. The role 

of these mechanisms either in isolation (Pritchard and Hogg, 2003a; Friedrichs and Aubrey, 1996) or in 

conjunction with each other (Robert et al., 2000) are less well understood because of the greater 

complexity of the hydrodynamics. In the past decade, increasing efforts have been attempted to investigate 

the morphology of tidal flats, primarily focusing on cohesive sediment with the suspended-load only. For 

non-cohesive sediment, the bed-load transport becomes more important and also contributes significantly 

to the morphodynamics of tidal flats. In this paper, we, however, are concerned with tidal flats that evolve 

under pure tidal forcing in which both bed load and suspended load transport are considered. This 

idealisation allows the identification of environmental factors which exert most influences on the evolution 

of tidal flats and thus characterise the morphodynamics under certain conditions.  

 

Convex profile (tide-dominant)

Concave profile (wave-dominant)
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2. Description of the model 

 

 Our main interest is macro-tidal flats which are common in the UK, and the physical parameters 

reflecting these areas. Le Hir et al. (2000) indicated that long-shore currents are likely to dominate the 

sediment transport only in deeper water. Thus, we consider cross-shore tidal currents as the main forcing 

hydrodynamic. Hydrodynamics in a shallow water region such as the nearshore zone can be well described 

by the nonlinear shallow water equations. These equations characterise well the water motion in which the 

velocity can be considered as depth-invariant. In simplifying but still adequately describing the 

fundamental physical phenomena, and thereby allowing a more rapid numerical solution, the NSWEs 

possess distinct advantages over more comprehensive equations sets, such as the Euler equations, for 

modelling long waves such as waves in the swash and inner surf zones and tidal motions:  

 

ℎ̂𝑡̂ + (ℎ̂𝑢̂)
𝑥

= 0       (1) 

 

𝑢̂𝑡̂ + 𝑢̂𝑢̂𝑥 + 𝑔𝜂̂𝑥 = −
𝜏𝑏

𝜌ℎ̂
     (2) 

 

where ℎ̂ is the water depth, 𝑢̂ is the depth-averaged velocity, 𝜂̂ is the water surface elevation and 𝜏𝑏 is the 

bed shear stress. From the hydrodynamics, the transport of suspended sediment is found from an advection 

equation of suspended sediment with erosion and deposition terms included. 

 

 𝑐̂𝑡̂  + 𝑢̂𝑐̂𝑥  =
𝐸̂−𝐷̂

ℎ̂
      (3) 

 

where 𝑐̂ is the depth-averaged concentration, 𝐸̂ is the flux of sediment from the bed into suspension by 

erosion and 𝐷̂ is the flux of suspended sediment onto the bed by deposition. 𝐸̂ and 𝐷̂ are evaluated by  

 

𝐸̂ = {
𝑚𝑒̂ (

𝜏𝑏

𝜏𝑠,𝑐𝑟
− 1)   for   𝜏𝑏 ≥ 𝜏𝑠,𝑐𝑟

       0                    for   𝜏𝑏 < 𝜏𝑠,𝑐𝑟

   (4) 

 

𝐷̂ = 𝜔𝑠̂𝑐̂      (5) 

 

where 𝑚𝑒̂ is a parameter related to rate of entrainment of sediment into water column, 𝜏̂𝑠,𝑐𝑟 is suspended-

load sediment critical bed shear stress at which the sediment is eroded into the water column, and 𝜔𝑠̂ is the 

settling velocity of suspended sediment. However, it is noted that the entrainment given in (4) is due to 

tidal motion, which is, in fact, very insignificant compared to the entrainment due to wave. In our model, 

although we do not consider sediment transport due to wave-generated currents, the entrainment flux 

caused by breaking waves is taken in to account and considered as the only entrainment mechanism. 

During propagation, waves may break on shallow tidal flats because of the growth of wave steepness. The 

wave-induced bed shear stress achieves its maximum value at breaking point and reduces landward (Green 

and Coco, 2013). 

 The wetting and drying at the shoreline are treated by coordinate transformation method so that 

the physical domain (𝑥, 𝑡) is mapped onto a new computational domain (𝑥̅, 𝑡̅) without including the dry 

cells (Huynh et al., 2017). A sinusoidal variation in water level is imposed as tidal variation at the 

boundary. The bed change equation is coupled with hydrodynamics and updated at each hydrodynamic 

time step.  

 

𝐵̂𝑡̂ + 𝜉(𝑞𝑏̂)𝑥 = 𝜉(𝐷̂ − 𝐸̂)     (6)  

 

where 𝑞𝑏̂ is bed load sediment flux determined by Meyer-Peter and Müller formula, 𝜉 = 1/(1 − 𝑝), where 

𝑝 is the bed porosity. Following the transformation method and nondimensionalisation given in Huynh et 

al. (2017), the governing equations (1), (2), (3) and (6) become  

 

ℎ𝑡̅ + 𝐴1ℎ𝑥̅ + 𝐴2(ℎ𝑢)𝑥̅ = 0     (7) 
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𝑢𝑡̅ + 𝐴1𝑢𝑥̅ + 𝐴2(𝑢𝑢𝑥̅ + ℎ𝑥̅ + 𝐵𝑥̅) = −𝑐𝐷
|𝑢|𝑢

ℎ
  (8) 

 

𝑐𝑡̅ + 𝐴1𝑐𝑥̅ + 𝐴2𝑢𝑐𝑥̅ =
𝐸̃(𝑢2−𝑐)

ℎ
    (9) 

 

𝐵𝑡̅ + 𝐴1𝐵𝑥̅ + 3𝐴2𝜎𝑢2𝑢𝑥̅ = 𝑀(𝑐 − 𝑢2)   (10) 

 

where 𝐸̃ = (𝜔𝑠̂/√(𝑔ℎ̂ ). It should be noted that 𝐸̃ = 𝐸 tan 𝛼, where 𝐸 is the exchange rate parameter of 

Pritchard and Hogg (2005), which is representative of the settling velocity of sediment. 𝑀(𝜎)  is 

dimensionless bed mobility with respect to suspended load (bed load). 𝐶𝐷 is friction coefficient. 

 

 

3. Model verification test 

 

The model is firstly tested using the same schematic configuration that was adopted by Pritchard and Hogg 

(2003b) (PH03) 

 

3.1. Model Setup 

 

The suspended sediment transport under reflected long waves forcing at infragravity frequencies on a plane 

beach was obtained analytically by PH03. They employed the nonlinear shallow water equations coupled 

with the advection of suspended sediment concentration in Lagrangian coordinates. The suspended 

sediment transport under such waves is localised close to the shoreline and principally directed landward, 

which is not responsible for the tendency of wave-dominated tidal flats to erode sediment over the long-

term. However, their findings provided a useful test case against which to validate our model.  

 It is also noted that the entrainment and deposition fluxes in (4) and (5) have been here adapted to 

include the deposition of flocs (see Pritchard and Hogg, 2003b for details). We consider a plane beach with 

domain length of 𝐿 = 100  and gradient of 1/100 . Long low-frequency waves with period of 𝑇 = 𝜋 

and 𝐻 = 0.02 is specified at the offshore boundary. These nondimensional parameters are consistent with 

the reference values applied by PH03 (see section 2.1.1. in Pritchard and Hogg, 2003b). The hydrodynamic 

under these parameter is also consistent with the analytical periodic results of 𝐴 = 0.2  and 𝜔 = 1 

suggested by Carrier and Greenspan (1958). 𝜉 = 0 is used to prevent any bed change to occur. This is 

consistent with the fixed bed condition used in PH03.    

 

3.2. Concentration field and net fluxes over time 

 

It is found that regardless of the initial condition for suspended sediment, the concentration field achieves a 

periodic state after a few cycles. The concentration field is spatially localised, and most apparently in the 

very nearshore region. It means that under the conditions of long low-frequency waves, velocities are high 

enough to entrain sediment only in the nearshore region. This is correlated with the high concentration field 

observed at these positions. The results of periodic concentration field are shown in Fig. 2, while the 

instantaneous and net cross-shore sediment flux are shown in Fig. 3 and Fig. 4 respectively.    

 The results are in good agreement as can be seen in three figures. The settling and scour lag are 

easily visualised as shoreline solutions of 𝑐 and 𝑢 in Fig. 4. The delayed response of the concentration field 

to the variation in the velocity is observed. It is noted that the hydrodynamics in the model are driven by a 

sinusoidal signal at the offshore boundary instead of the Carrier and Greenspan (1958) analytical solutions. 

Thus, there are some small discrepancies in hydrodynamic solutions comparing to Pritchard and Hogg 

(2003b) (Huynh et al., 2017). This principally explain the small difference between our model and 

reference results and may indicate why the net flux 𝑄(𝑥) is higher erosion seaward but less accretion 

shoreward (Fig. 4). The performances of the present model are also confirmed against other numerical 

models in both hydrodynamics and morphodynamics with good agreement (Huynh et al., 2017). It suggests 

that this coupled model is suitable for prediction of the morphodynamic evolution of a non-cohesive bed 



Coastal Dynamics 2017 

Paper No. 087  

1169 

 

under the influence of long waves such as tidal currents.  

 

 

Figure 2. Suspended concentration under PH03 flow conditions: plot at intervals of 𝜋/16. (a) first half of run-up; (b) 

second half of run-up; (c) first half of run-down; (d) second half of run-down (PH03 solutions: red dashed, present 

solutions: black solid) 

 

 

4. Morphodynamic evolution under tidal currents only 

 

In this section, we aim to investigate the effects morphology evolution under the influence of tidal currents 

only. We consider a rather gently sloping flat associated with tide-dominated tidal flats (Short, 1991) with 

gradient of 0.005 and initial domain length at mid-tide of 2km. The hydrodynamics is driven at the offshore 

boundary by a semidiurnal sinusoidal signal of 5m tidal range. For sand of the median grain size of 

𝐷50 = 0.2mm, typical values of sediment properties are given in Table 1 (Soulsby, 1997). For the given 

bathymetry and physical parameters, the corresponding dimensionless parameters are 𝐸̃ = 2×10
-3

; 𝑀 =
 2×10

-4
 and 𝜎 = 2×10

-4
. The effects of bed- and suspended-load (relating to suspended concentration) on 

bed evolution are represented by 𝜎, 𝑀  (and 𝐸̃ ), respectively. Following Huynh et al. (2017), these 

parameters are related to sediment properties. It is noted that these parameters are significantly smaller than 

those applied in swash event, where the hydrodynamic is much more dynamical (Zhu and Dodd, 2015). By 

considering a broad range of parameters on a same bed bathymetry, we can examine the morphodynamics 

of different bed sediment and investigate the effect of individual and combined load mode on the final bed 

change. 

 

 

(a) (b) 

(c) (d) 
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Table 1. Typical physical parameters associated with fine sand sediment 

  

𝑚𝑒̂ 1×10-3 m/s 

𝜔𝑠̂ 2×10-2 m/s 

𝜌 1027 kg/m3 

𝜏𝑠,𝑐𝑟 0.2 N/m2 

𝐶𝐷 4×10-3  

𝑝 0.5  

 

 

 

Figure 3. Instantaneous sediment flux 𝑞(𝑥, 𝑡) over a period obtained at: (i) 𝑥 = 0.0325; (ii) 𝑥 = −0.0025; (iii) 

𝑥 = −0.0375; (iv) 𝑥 = −0.0725; 𝑥 = −0.1075 (PH03 solutions: red dashed, present solutions: black solid) 

 

 

Figure 4. Net flux 𝑄(𝑥) over a period (PH03 solutions: red dashed, present solutions: black solid) 

 

4.1. Combined mode of load transport  

 

The parameters 𝜎, 𝑀 and 𝐸̃ evaluated above are used as reference values. The bed profile and bed change 

after 500 tidal periods under combination of bed and suspended-load transport are shown in Fig. 5. The 

behaviour of non-cohesive sediment morphodynamics under tidal currents is similar to muddy sediment in 

the previous studies (Kirby, 2000 and Roberts et al., 2000). There is a tendency of shoreward transport of 
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net sediment under tidal currents. The accretion in the intertidal zone continues with time until an 

equilibrium convex-upward profile in the intertidal zone is achieved. At the lower part of the tidal flat 

region where the bed is always submerged below water level, erosion is observed. Because of the 

conservation in sediment, this erosional sediment is supposed to be carried shoreward under tidal currents 

and accrete in the intertidal zone. 

 

 

Figure 5. Bed profile 𝐵 (left) and bed change Δ𝐵 (right) versus cross-shore distance 𝑥  after 500 tides for combined 

mode 

  

4.2. Bed-load transport only and suspended-load transport only 

 

Bed change under bed-load transport only is achieved by setting 𝑀 = 0 in the model. The final bed 

changes after 500 tidal periods for various 𝜎 =  2×10
-4

, 2×10
-3

 in comparison with above reference 

solutions are shown in Fig. 6. 𝑀 = 0 means there is no entrainment of sediment into water column (Huynh 

et al., 2017), thus 𝑐 is locally controlled by velocity field, exchange rate parameter and pre-suspended 

sediment. Since the equilibrium state is set initially, there is neither erosion nor deposition throughout the 

domain. It is noted that this is instantaneous equilibrium, which vary locally. Since there is no entrainment, 

sediment settles down and  𝑐 quickly approaches zero. 𝑐 will remain zero no matter how the value of 𝐸̃ 

varies.  

 Similarly, setting 𝜎 = 0 means there is no bed mobility with respect to bed-load transport; the 

sediment transportation takes place by suspended-load transport only. The final bed changes under this 

transportation mode with 𝑀 = 2×10
-4 

and 2×10
-3 

are shown in Fig. 6. It can be seen from Fig.6 that the bed 

change due to bed-load only tend to erode, while those due to suspended-load accrete over time with the 

effects are significant at the lower part of tidal flats.  

 The patterns of bed change due to bed load only are quite similar for varous values of 𝜎. It is also 

noticed that there are erosions due to bed-load transport occurring at the lower part. However, small 

accretions are still observed in the upper part with varied 𝜎. The suspended-load transport tends to move 

the sediment shoreward and build up profile at the intertidal zone. Regarding suspended-load only, 

increasing 𝑀 does not seem to increase the magnitude of accretion but is likely to shift the accretion more 

shoreward (Fig. 6). It is noted that the similar tendency of moving the suspended cohesive sediment 

shoreward was also observed by Pritchard and Hogg (2003a). Considering the bed change in intertidal zone 

by varying both 𝜎  and 𝑀 , it appears that the shoreward movement of sediment is likely due to the 

suspended-load rather than due to bed-load.    
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Figure 6. Bed change Δ𝐵 due to different transport type versus cross-shore distance 𝑥 (black solid line: 

reference bed change in §4.1, two vertical dotted lines represent positions of low and high tide) 

  

 

5. Development for wave-generated entrainment and erosional flux 

 

As mentioned in §4, suspended load is the dominant factor in the morphodynamics of intertidal region. 

However, tide is not the only factor to contribute to sediment suspension in the surf zone. Wind-waves have 

a typically short period compared to tides, but in shallow water the wave-orbital motions are very likely to 

penetrate down to the bottom and resuspend sediments in intertidal zone. Orbital motions of even very 

small waves height (less than 20cm) are able to resuspend intertidal flat sediments (Anderson, 1972; Green, 

2011). In some intertidal flats with low tidal range, tidal currents are incapable of resuspending sediments, 

and the entrainment of sediment into the water column is mainly controlled by waves (Green et al., 1997).  

In this model, instead of the erosion source term given in (4), we employ different equations which take 

into account erosion due to waves. 

 The ratio of wind-wave wavelength to water depth varies significantly, leading to the variation in 

wave-orbital speed and wave-induced bed shear stress. In this model, we assume that the incident wave 

conditions at offshore boundary is constant over a tide. Thus, water depth is a main control on the wave-

induced bed shear stress, and associated entrainment flux. The wave-induced bed shear stress achieves its 

maximum once breaking occurs and reduces shoreward with water depth (Green and Coco, 2013). We 

assume that the entrainment of suspended sediment only takes place when waves start to break. A breaking 

index of 𝛾𝑏 = 0.5 is considered following Roberts et al. (2000). For a given wind-wave incident at seaward 

boundary of wave height 𝐻 and period 𝑇, the wave-orbital velocity amplitude at sea bed is given by linear 

wave theory as 

 

𝑢𝑤,𝑏 =
𝜋𝐻

𝑇 sinh(𝑘ℎ)
      (11) 

 

where 𝑘 is the wave number. Under waves-only condition (i.e., without tidal current), the associated wave-

induced bed shear stress 𝜏𝑤 is obtained using a quadratic bottom friction 

 

𝜏𝑤 =
1

2
𝜌𝑓𝑤𝑢𝑤,𝑏

2       (12) 
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𝑓𝑤 = 1.39 [
𝑢𝑤,𝑏𝑇

2𝜋(𝐷50/12)
]

−0.52

     (13) 

 

where 𝑓𝑤 is the wave friction factor, following Soulsby (1997) and 𝐷50 is the median grainsize of the bed 

sediment. Roberts et al. (2000) assumed a linear summation for the total bed shear stress from tidal currents 

and waves. In our model, the bed shear stress is assumed to be influenced by wave only. Under this 

assumption, the effect of wave and current on entrainment can be isolated for comparison. The mean bed 

shear stress 𝜏𝑚 under both currents and waves can be obtained following Soulsby (1997). The adapted 

erosional flux includes the mean bed shear stress in the same manner as (4). By appling this new 

description of entrainment flux, this model has simplified the computational effort by not including any 

coupled wave model, but still maintains the key mechanisms of sediment transport in the intertidal areas. 

The periodic submerging and exposing of intertidal flat accounting for wetting and drying process are 

solved by nonlinear shallow-water equations. 

 

5.1. Wave-induced bed shear stress and erosional flux over tidal cycle. 

 

The erosional fluxes are considered using the same schematic configuration applied in Roberts et al. (2000) 

for later qualitative comparison. A plane bed of 0.001 linear slope is considered.over a distance of 6km 

(origin of the domain is located at the seaward boundary). The seaward boundary is driven by a 

semidiurnal sinusoidal signal of 5m tidal range. A constant wave height of  0.2m and wave period of 5s are 

assumed to propagate throughout the domain until depth-limited breaking occurs. Other parameters are 

given in the table below: 

 

Table 2. Physical parameters for wave-induced bed shear stress  

 

𝑚𝑒 1×10-3 m/s 

𝐷50 0.2 mm 

𝜌 1027 kg/m3 

𝜏𝑠,𝑐𝑟 0.2 N/m2 

𝐶𝐷 2×10-3  

𝛾 0.5  

 

 The variation of bed shear stress under wave only and the associated erosional fluxes are shown in 

Fig. 7. For breaking index of 0.5 and small wave incident applied, wave breaking, which corresponds to the 

maximum bed shear stress, occurs at a small water depth compared to the tidal range. Thus, the bed shear 

stress at seaward and shoreward reaches its maximum during low tide and high tide, respectively. This 

behaviour is confirmed with tidal variation as can be seen in Fig. 7b. Seaward, in the lower part of tidal 

flat, the influence of waves on the bed decreases and the bed shear stress achieve its peaks during low tide 

level. Shoreward in the upper part, because of the decreasing water depth, the bed shear stress is larger with 

its maximum at breaking. The shear stress reduces with rising tide as the water depth is large enough to 

reduce the influence of waves. However, in the shoremost region, the shear stress will achieve its 

maximum with high tide since the region is within the surf zone during submerging. The bed shear stress 

for waves also qualitatively agrees with Le Hir et al. (2000) and Roberts et al. (2000). The corresponding 

erosional flux is shown in Fig. 7a. The maximum erosion is observed at the breaking point. The considered 

location is inactive (no erosion) once the water depth is large enough so that there is no breaking. 
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(a) 

(b

) 

(c) 

(d) 

 

Figure 7. ℎ, 𝜏𝑤 and 𝑄𝑒 at different locations along crosshore over a tidal cycle starting from low tide. The locations are 

given as distance from offshore boundary (𝑥 = 0) toward the shoreline: 𝑥 = 1km (black); 𝑥 = 3km (red); 𝑥 = 5km 

(magenta); 𝑥 = 7km (blue); 𝑥 = 8km (green). 

 

 

6. Bed change using new erosional flux over tidal cycle 

 

The model has been tested for the configuration bed applied in §4. The physical parameters given in Table 

1 are applied in this test (if appropriate). The bed porosity of 𝑝 = 0.5 for fine and medium sand is used. 

The bed change Δ𝐵 over one tidal cycle is shown in Fig. 8. The bed shear stresses and the associated 

erosional fluxes are shown in Fig. 9. Since we want to investigate the behaviour of the new erosional flux, 

sediment transport due to suspended-load only is considered. The bed change due to suspended-load under 

tidal current (see §4.2 for 𝑀 = 2×10
-4

) is used for comparison. The behaviour of bed change between those 

two are quite similar with the tendency of shifting the sediment onshore. Since the new entrainment only 

occurs within the surf zone, there is no change in bed profile outside the surf zone. Considering the 

intertidal region, the difference in accretion and erosion between these two are significant. Regarding 

waves entrainment factor, the accretional and erosional rates are about double the reference result. The 

contributions of waves into suspended sediment concentration then bed change are notable. 
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Figure 8. Bed change after one tidal cycle (dashed line: suspended-load only for reference parameters used in §4.1, two 

dotted lines bound the intertidal region 

Figure 9. ℎ, 𝜏𝑤 and 𝑄𝑒 at different locations along crosshore over a tidal cycle starting from low tide. The locations are 

given as distance from offshore boundary (𝑥 = 0) toward the shoreline: 𝑥 = 0.4km (black); 𝑥 = 0.8km (red); 𝑥 =

1.6km (magenta); 𝑥 = 2km (blue); 𝑥 = 2.4km (green). 

(a) 

(b) 

(c) 

(d) 
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7. Conclusion 

 

The relationships between hydrodynamic forcing on two modes of sediment transport (bed-load and 

suspended-load) on non-cohesive macro-tidal flats have been investigated using coupled hydro-

morphodynamic model. In the model, the most important physical processes have been represented in a 

simplified way. The cross-shore profiles of the flats under tidal currents have been investigated under 

nonlinear shallow water equations where momentum and friction effects of tidal propagation are included. 

Individual transport mode and combined mode are considered. The suspended-load transport is more 

dominant in the accretion of the intertidal region. In the lower part that is always submerged, the bed-load 

transport becomes more dominant and tends to erode the sediment seaward. The modification on the 

erosional flux caused by wind-waves has been investigated. It shows that the contribution of waves into 

suspending sediment then bed change is considerable, even in the configuration of tide-dominated flat.  

  Further studies of morphodynamics of non-cohesive tidal flats are undertaken. These include: 

varying tidal range with the inclusion of springs and neaps tides; combination of currents and wavs in 

erosional flux; the effects of pre-suspended sediment or sediment supply at seaward boundary on the 

morphodynamics. 
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