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Abstract 

 
The spatial resolution of coastal flood simulations has improved with enhanced computational power and increasing 

availability of high-resolution topographic data. However, grid refinement does not necessarily enhance the accuracy 

of standard flood models based on nonlinear shallow water equations (NSWE), because flows over locally steep 

topographies may be significantly affected by non-hydrostatic pressure induced by vertical flow acceleration. In this 

paper, we present a depth-integrated, non-hydrostatic model for simulating flows over steep landforms such as coastal 

levees. The model is constructed from fully nonlinear Boussinesq-type equations with a modification term to suppress 

oscillatory behaviors in overflow solutions. The proposed model accurately simulates the experimental data for steady 

overflows, whereas the NSWE model significantly underestimates the overflow rate in cases of large overflow depths.  
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1. Introduction 

 

Over the past few decades, the coastal flood model has developed into an essential tool for mitigating 

coastal disasters such as tsunamis and storm surges. The resolution of the coastal flood model has improved 

with expanding computational power, providing detailed information of potential flood impacts on coastal 

communities. Airborne LiDAR technology has also advanced, providing us with meter- or even sub-meter-

scale digital elevation models (DEMs). Therefore, the model resolution is expected to further improve in 

future decades. However, the increasing grid resolution reveals finer-scale topographic features, which can 

be man-made structures (such as coastal levees and seawalls) or natural landforms (coastal dunes and 

hills). Over steep landforms, the vertical flow acceleration might violate the hydrostatic assumption in the 

typical flood models. Under this condition, grid enhancement will not improve the model accuracy beyond 

a certain limit, unless the hydrostatic assumption is relaxed. To demonstrate this scenario, we conducted a 

case study of coastal flooding over a levee-protected area during the 2011 Tohoku tsunami (Shimozono and 

Sato, 2016). 

If the non-hydrostatic pressure is incorporated in the model equation, the model performance will 

respond to the grid refinement. Some researchers have relaxed the topographical restrictions by correcting 

the nonlinear shallow water equation. In an early attempt, Dressler (1978) derived the shallow water 

equation in orthogonal curvilinear coordinates fitted to the bottom surface, thus accounting for the flow 

curvature effect. The curvilinear approach was also adopted in later modifications of the shallow water 

equations (Bouchut et al., 2003 and Keller, 2003). More recently, Dutykh and Clamond (2011) derived a 

variant of the equations through the variational principle. Fenton (1996) pointed out drawbacks of the 

curvilinear approach and added a centrifugal term to the shallow water equations for steady flows. 

Although these modified shallow water equations incorporate the bed slope effect, their performances were 

confirmed  only in very simple problems; hence, their applicability to flood simulations is not known.  

Alternatively, we could apply the higher-order extensions of the shallow water equations in terms of the 

shallowness parameter (the relative depth to wave length) known as the Boussinesq-type equations. As the 

shallowness parameter and bed slope are implicitly assumed to be of the same order, this class of equations 

can account for the effects of steep bed slopes. The Boussinesq-type equations accurately simulate the 

propagation of relatively short waves in coastal water, but have rarely been applied to flood simulations 
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Figure 1. Definitions of axes and flow variables. 

over complex coastal topography, possibly because the higher-order terms (called dispersion terms or 

Boussinesq terms) remove the hyperbolic property of the equations, and lead to oscillatory behaviors in 

solutions. Consequently, in flood simulations involving transient flows and dry/wet interfaces, the 

Boussinesq-type models should be improved for higher model robustness. There have been some attempts 

to develop shock-capturing Boussinesq-type models for wave overtopping simulations (Lynett et al., 2010; 

Tonelli and Petti, 2013), but their focus was to improve wave propagation prior to overtopping by 

incorporating frequency dispersion capabilities. The role of the Boussinesq terms in flood flows over steep 

landforms is not well understood. 

The present study is aimd at exploring the effect of the non-hydrostatic pressure in coastal levee 

overflows caused by tsunamis or storm surges. For this purpose, we develop a depth-integrated, non-

hydrostatic model based on fully nonlinear Boussinesq-type equations. To control the excessive oscillations 

in solutions, we follow the approach of Madsen et al. (1991), and modify the original equation by 

introducing a free parameter. The model is validated in comparisons with experimental results for steady 

flows over trapezoidal levees. To clarify the non-hydrostatic pressure effect on overflow characteristics, we 

compare the model results with those of the nonlinear shallow water equations. 

 

2. Model Description 

 

2.1. Governing equations 

 

Boussinesq-type equations differ by their variable types and truncation orders. For transient water flows 

(see Figure 1), the model equation should be datum-invariant. Here we employ the fully nonlinear weakly 

dispersive wave equations independently derived by Goto (1984) and Seabra–Santos et al. (1987), which 

are expressed as 
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where t is time, x is the horizontal coordinate, and the subscript x or t denotes a derivative with respect to x 

or t, respectively. g is the gravitational acceleration, d is the total water depth, u is the depth-averaged 

horizontal velocity, and Q is the flow rate per unit width (= du). η and b also denote the elevations of the 

water surface and bed, respectively. To derive these equations, we integrate the 2D continuity and Euler's 

equations over the depth and retain terms up to second-order of the shallowness parameter and the bed 

slope. The RHS of Equation (2) contains higher-order terms, which are ignored in the nonlinear shallow 

water equations. 

The vertical distribution of pressure corresponding to the above equations is given by 
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where p is pressure, z is the vertical coordinate and p is the density of water. The second term on the RHS 

of Equation (5) represents the non-hydrostatic pressure due to vertical flow acceleration, which 

quadratically varies in the vertical direction. This formulation accounts for the centrifugal effect in the 

transient flows over coastal levees. However, these equations yield excessive oscillations over the levee 

crest in the overflow simulations, which may lead to model instability. 

Similarly to Madsen et al. (1991), we improve the Boussinesq-type equations in this regard by adding 

a modification term to Equation (2) as: 

 

 3

3 ,t x x xx
d u uu g    

                                                 (6) 

where α is a small parameter. This modification term can be shown to be fourth-order in the shallowness 

parameter; therefore, adding it to Equation (2) does not affect the order of magnitude of the equation. As is 

well known, the linear dispersion relation in wave simulations is optimized at α = 1/15. As described later, 

we use the degree of freedom to control the oscillatory behaviors in overflow solutions. In addition, we 

insert a frictional term based on the Manning formulation to simulate the bed friction. The resulting 

momentum equation reads 
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             (7)                    

where n is the Manning roughness. Equations (1) and (7) form the model equations in our present study. 

To investigate the properties of the model equations in flow simulations, we consider steady flows 

over a uniform slope s. As evident from Equation (1), the flow rate Q becomes horizontally uniform, and 

Equation (7) reduces to an equation in a single variable d. To simplify the expression, we neglect the bed 

friction, which exerts a relatively small effect over steep bed slopes. The resulting single variable-equation 

becomes 
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The first three terms on the LHS of Equation (8) describe the non-hydrostatic pressure effect. The balance 

among these three terms is tuned by the modification parameter α. As this third-order nonlinear differential 

equation is difficult to solve, we linearize it by expressing d as a uniform water depth h plus a small 

deviation ξ(x) following Fenton (1996); namely, we set d = h + ξ. Neglecting the higher-order terms in ξ, 

we have 
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where Fr is the Froude number (= Q/ℎ√𝑔ℎ). Equation (9) is a third-order linear differential equations in ξ. 

We seek solutions of the form ξ = e
λx

. To this end, we find the characteristic equation for the homogeneous 

problem: 
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The discriminant of the cubic equation is given by 
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where the square terms of the bed slope are neglected to truncate the discriminant (the exact discriminant is 

very lengthy). From this discriminant, we deduce the forms of the solutions. When Fr > 1 (supercritical 

flow) or Fr < √3𝛼/(3𝛼 + 1) (sub-critical flow), ∆ is positive; thus, the characteristic equation has three 

real roots, and the water surface variation is described by a combination of exponential functions. When 

√3𝛼/(3𝛼 + 1) < Fr < 1 (subcritical flow), the characteristic equation has one real and two imaginary 

roots, so the water surface exhibits oscillatory behaviors. The parameter α modifies the range of Fr wherein 

undulations appear in the water surface. 

The modified momentum equation correctly describes the free overflow processes, wherein which the 

flow suddenly changes from subcritical to supercritical on the crests of convex landforms. The 

modification term exerts no significant effect on supercritical flows (Fr > 1), but changes the wavelength of 

the undulation in subcritical flows (Fr < 1). According to Equation (11), the undulations can form 

immediately upstream of the critical depth on the crest. The original equation (α = 0) affords oscillatory 

solutions in all subcritical flow regions, whereas the modified equation with small positive α admits 

oscillatory solutions only for Fr  below the trans-critical condition (Fr = 1). For example, if we set α = 1 

/15, the undulations appear within the range 0.41 < Fr < 1. In Section 3, we will choose this parameter by 

comparing the model results with experimental data. 

 

2.2. Numerical method  

 

The numerical method is similar to that of Shimozono et al. (2015). We hybridize a high-order finite 

difference scheme, hereafter called the base scheme, with a shock capturing scheme based on Yee et al. 

(1999). First, the model equations are solved in the base scheme (the homogenous part of the equations). 

To the base solution, we add the nonlinear dissipation associated with the shock-capturing scheme. The 

applicability of the shock-capturing model to levee overflows was confirmed in simulations of nonlinear 

shallow water equations (Hu et al., 2000; Tuan and Oumeraci, 2010; Lynett et al., 2010; Tonelli and Petti, 

2013). By virtue of its conservative properties, the hydrostatic model converges to weak solutions by the 

momentum principle or the Bernoulli equation, depending on the flow type (Stelling and Duinmeijer, 

2003). Variants of this model have been employed in two-dimensional simulations of coastal flooding in 

actual areas protected by levees (Le Roy et al., 2014; Shimozono and Sato, 2016). More recently, 

researchers have simulated nearshore wave processes (including wave breaking) by applying the shock 

capturing scheme to the Boussinesq-type equations (Bonneton et al., 2011; Roeber et al., 2010). The 

present model is regarded as a variant of these models. 

To simplify the model representation, we compactly rewrite Equations (1) and (7) as 
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First, Equation (12) is discretized by the finite difference method on a regular grid. The base scheme is a 

high-order finite difference scheme for dispersive equations, proposed by Wei and Kirby (1995). The 

Adams–Bashforth–Moulton method is used for the time integration, whereas the spatial discretization is 

performed by fourth-order operators for the non-Boussinesq terms and by second-order finite differences 

for the Boussinesq terms. 
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The characteristics-based dissipation term is based on the homogeneous part of Equation (12) and 

applied at the end of the predictor-corrector step. Setting U
*
 as the numerical solution of the base scheme, 

the solution in the next time step is calculated by the following conservative form of the finite difference 

equation: 

 

1 * 1 * *
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 


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
                                                (15) 

where ∆t and ∆x are the time step and the grid spacing in the x-direction, respectively, Ui
n
 is the discrete 

approximation of U at x = i∆x and t = n∆t, and F
*
i+1/2 is the dissipative numerical flux defined at the cell 

center. The second term on the RHS of Equation (15) is a generic term describing the nonlinear dissipation 

in different shock-capturing methods. The form of F
*
i+1/2 depends on the utilized type of shock-capturing 

method. In the Roe–Sweby TVD scheme (Yee, 1989), the dissipative numerical flux is written as 

 

*
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Here Pi+1/2 is the right eigenvector matrix of the Jacobian matrix dF/dU evaluated by an approximate 

Riemann solver proposed by Roe (1981). The mth element of the vector Φi+1/2, denoted by ϕ
m

i+1/2, is written 

as 
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where a
m

i+1/2 with m =1, 2 are the characteristic speeds, which are the eigenvalues of dF/dU, and β
m

i+1/2 is 

the mth element of the characteristic variables obtained by P
-1

i+1/2(U
n
j+1 -U

n
j). The function ψ is introduced 

to avoid entropy-violating solutions (Harten and Hyman, 1983), while the function δ is the flux limiter 

function of the smoothness indicator r
m

i+1/2, defined by 
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which prevents the generation of spurious oscillations in the numerical solutions. If the flux limiter lies 

within the admissible limiter region (Sweby, 1984), the numerical solution corresponds to that of the 

second-order TVD scheme. Moreover, when δ = 0, the numerical scheme reduces to the Roe-type upwind 

scheme. To observe the nature of the model equations, we selected a second-order TVD limiter known as 

the minmod limiter (Roe, 1986).  

 

3. Steady Overflow Simulations 

 

3.1. Steady flows over levees 

 

To investigate the model performance in steady overflow problems, we compared the model results with 

the experimental data of free overflows on a levee. Simple laboratory tests were conducted in an 

experimental flume of width 0.9 m. The levee was modeled from smooth material (acrylic material). The 

cross-section of the levee was trapezoidal (slope = 1/2 at both sides), with a height he and crest width Lw of 

12 cm and 6 cm, respectively (see Figure 2). The water surface profiles around the levee were measured 

under different rates of steady flows. The water surface measurements were performed by an image-based 

technique. The water in the flume was colored with blue dye, and the steady flows around the levee were 

photographed through the side glass of the flume. To detect the water surface in the images, the water body 

was separated from the background image. The continuous water surface profiles around the levee were 

acquired after geometric corrections.  
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Figure 2. Schematic of steady flows over levees with trapezoidal cross-sections. 

Figure 3. Comparisons of measured and computed water surface profiles around the trapezoidal levee;  

                      (a) h0/he = 0.36. (b) h0/he = 0.88. 

(a) 

(b) 
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Figure 4. Computed profiles of the piezometric head and water surface around the trapezoidal levee  

               for α=1/100, 1/30 and 1/5;  (a) h0/he = 0.36. (b) h0/he = 0.88. 

(a) 

(b) 

Numerical simulations were implemented by the time-dependent model in 2.2, although the steady 

problem is concerned. Solving the steady-state equation for the trans-critical flows is difficult because the 

boundary conditions on both sides of the levee cannot be known a priori; both the upstream and 

downstream flows are determined from the levee side. Therefore, using the time-dependent model, we 

initiate the simulations from the stationary water at constant elevation upstream of the levee crest 

(indicated by the dashed line in Figure 2). Subsequently, a positive and negative wave propagate in the 

downstream and upstream directions (indicated by the dash-dot line in Figure 2). Provided that the 

horizontal beds on both sides are sufficiently long, a steady overflow state develops around the levee. The 

flow rate of the steady solution can be varied by changing the initial water elevation. The computations 

were carried out on a grid resolved to ∆x/he = 0.1, and terminated when the water surface evolved by less 

than a specified threshold during one time step. The Manning roughness was set to n = 0.01 m
-1/3

s. The 

initial water level was set such that the upstream water level at steady-state matched the experimental water 

level. 

Figure 3 compares the computed and measured water surface profiles around the levee for two 

overflow depths (h0 = 4.3 and 10.6 cm). Shown are the numerical results of the modified equation with 

three values of α (= 1/100, 1/30, and 1/5), and those of the nonlinear shallow water equation (denoted by 

NSWE). To limit the generation of the subcritical oscillation upstream of the levee, the modification 

parameter was constrained to small positive values. At the small overflow depth (h0 = 4.3 cm), the results 

of the four model equations were very similar, except on the levee crest. As the centrifugal effect is small, 

the higher-order terms exert a minor influence. However, at the higher overflow depth (h0 = 10.6 cm), the 

non-hydrostatic pressure significantly affects the overflow characteristics. Downstream of the levee, the 

water surface profile calculated by the NSWE model lies below the experimental profile, indicating that 
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Figure 5. Relationship between Q
*
 and ζ. 

this model underestimates the overflow rate. The modified equation with α = 1/30 yields the best match to 

the experimental result. The modified equation with α = 1 /100 generates a slight undulation upstream of 

the crest, which was not observed in experiments. As α goes to zero, this undulation intensifies to 

destabilize the computation. Conversely, the modified equation with a =1/5 significantly overestimates the 

flow depth on the crest. As the α value increases, the convergence to steady-state accelerates because the 

subcritical oscillation is suppressed.  

Figure 4 compares computed profiles of piezometric head from Equation (5) and water surface for α = 

1/100, 1/30 and 1/5. The pressure is hydrostatic where the piezometric head profile agrees with the water 

surface profile. Their discrepancy indicates the generation of the non-hydrostatic pressure due to the 

centrifugal effect. The results suggest that the non-hydrostatic pressure, which localizes at levee corners, 

rapidly increases with the overflow depth, since the centrifugal force is proportional to the flow velocity 

squared. The piezometric head profiles qualitatively agree with measured data from past levee-overflow 

experiments (e.g. Kato et al., 2012). The profile of large α exhibits weaker fluctuations suggesting that the 

modification term plays a role of stabilizing the computation.  

 

3.2. Overflow rate 

 

To validate the model over a wider range of flow conditions and levee geometries, we compared the model 

results with previously published experimental data. For free overflows, Fritz and Hager (1998) proposed 

an empirical fitting formula to their own and existing data: 

* 0

0

0.43 0.06sin[ ( 0.55)], ,
w

H
Q

H L
     


                                     (19) 

where Q
*
 = Q/𝐻0√g𝐻0 is the non-dimensional overflow rate per unit width (the discharge coefficient) and 

H0 is the energy head upstream of the levee. Equation (19) expresses Q
*
 as a function of H0 and Lw. The 

various overflow data for levees with 1/2-sloped sides collapse onto the empirical curve in the range 0.1 < ζ 

< 0.8. To compare the model and empirical results, we varied ζ from 0.1 to 0.8 (23 cases), and ran the 

model for different combinations of Lw /he and h0/he (0.3 < Lw /he < 2.0 and 0.2 < h0/he < 1.1). The energy 

head, evaluated as H0 = h0 + 5Q
2
/6g(h0 + he), is consistent with the formulation of Fritz and Hager (1998), 

with h0 evaluated at he apart from the upstream toe of the levee. To see the effect of the modification term, 
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we varied α as 1/15, 1/30, and 1/100 in the model equation. For comparison, we also executed the NSWE 

model. 

Figure 5 shows the computed and empirical relations between Q
*
 and ζ. According to the empirical 

curve, Q
*
 increases with increasing ζ (or decreasing Lw/H0). In contrast, the NSWE model predicts a nearly 

constant Q
*
, which is close to a theoretical value for broad-crested weirs. This discrepancy is attributed to 

the underestimated overflow rate, because the centrifugal effect is absent in this model. When large-depth 

overflow occurs on a narrow-crested levee, such centrifugal effects cannot be ignored. The relations 

computed by the modified equation are better matched to the empirical curve. The best agreement is 

achieved for α = 1/30, although α = 1/100 also yields similar results. As previously illustrated in Figure 3, 

excessively small α produces unrealistic oscillations in the upstream water surface, which manifest as 

increased data scattering in Figure 5. Therefore, we conclude that when simulating levee overflows in the 

present model, the optimum α value for model accuracy and robustness should lie somewhere around 1/30.  

 

4. Conclusion 

 

In the present study, we demonstrated the importance of non-hydrostatic pressure in simulations of long 

wave flooding over coastal levees, on which the flow suddenly transits from subcritical to supercritical 

regime. Neglecting the non-hydrostatic pressure leads to underestimation of the overflow rate, especially at 

large flow depths and curvatures. Although the model performance can be potentially improved by adding 

fully nonlinear Boussinesq terms to the model equation, the classical Boussinesq-type equation induces 

excessive oscillations immediately upstream of the levee crest, which might destabilize the model. The 

unwanted oscillations can be reduced by a modification term with a free parameter α. The value of α was 

optimized at around 1/30 through comparisons between the model and existing experimental data. 

Therefore, the standard model of coastal flood simulation, which is based on the nonlinear shallow water 

equations, potentially underestimates large-scale flood events on coastal areas fronted by steep landforms, 

such as dunes and levees. 
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