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Abstract 

 

In this paper we present a new numerical modelling approach for coastal and marine applications where a porous 

media conceptual model was combined with a free surface volume-of-fluid (VOF) model and an immersed boundary 

method (IBM). The immersed boundary model covers the method of describing a solid object in a simple 

computational mesh without resolving the object with a conventional body-fitted mesh. This model enables a detailed 

resolution of some parts of a stone cover layer for erosion protection with the IBM model while other parts are handled 

with the conceptual porosity model. In this paper, the model is applied to investigate two practical cases in terms of a 

cover layer of stones on a flat bed under oscillatory flow at different packing densities, and a rock toe structure at a 

breakwater.   

 

Key words: Erosion protection, porous media modelling, immersed boundary method, Navier-Stokes 

equations, OpenFOAM 

 

 

1. Introduction 

 
In this paper, we present a new numerical modelling approach for coastal and marine applications where a 

porous media conceptual model was combined with a free surface volume-of-fluid (VOF) model and an 

immersed boundary method (IBM). With chancing climate conditions, more frequent occurrences of 

storms, and rising sea level the environmental loads on coastal areas are increasing. Areas which are 

already protected against erosion needs to be re-evaluated for optimizing the protection strategy. New areas 

without previous measures against costal erosion becomes relevant for establishing protection against 

severe erosion of the beach. With the capacity of computational resources that exists today, it is relevant to 

address the need for computational models that can handle the detailed processes of interaction between 

stone and rock materials, and the finer sand fractions of the seabed and beaches. 

 In recent years, numerical methods and computational resources have developed to a level at which 

consulting and design engineers apply numerical simulations as an integrated part of the design and 

development process. However, a complete resolution of the porous structure in cover stone layers and 

breakwaters is not yet feasible. Therefore, a common procedure is to apply resistance-type models where 

the effect of the stones is added as a source term in the momentum equation. Examples of this were seen in 

van Gent (1995) where a model based on the Navier-Stokes equations was developed. The porous media, 

consisting of a rigid skeleton and pores, was treated as one continuum which exerts forces on the fluid due 

to drag, friction, and acceleration. Several developments have applied the same methodology for two-

dimensional domains, e.g., Liu et al. (1999), Hsu (2002), Garcia et al. (2004), and Lara et al. (2006). del 

Jesus et al. (2012) and Lara et al. (2012) presented a model where also three-dimensional flows were 

considered. Recently, Jensen et al. (2014) presented a detailed investigation of the theoretical background 

of the porous media equations and resistance coefficients. These models provide results at the same level of 
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detail as corresponding physical experiments such as reflection and transmission, overtopping and front 

slope velocities for stability evaluation, etc. 

 If the actual armour stones could be resolved directly in the numerical model a higher degree of detail 

could be achieved. This would correspond to measuring the forces directly at an armour stone as in 

Moghim et al. (2012). However, the complex geometrical layout of multiple armour stones e.g. in the front 

layer of a breakwater gives a complicated computational mesh. A traditional way of including solid 

structures in a computational model is by a body-fitted mesh where the grid cells follow the surface of the 

structure. For randomly placed armour stones with complicated shapes this may be an impossible or at least 

a very time-consuming task. Here the immersed boundary method provides an efficient way of including 

complex shapes in a simple computational mesh. 

 The immersed boundary method was originally developed to simulate blood flow. Here the entire 

simulation was performed on a simple Cartesian grid, which did not conform to the shape of, e.g., the 

heart. Since this first introduction of the method, several modifications and new developments have been 

presented. In Mittal and Iaccarino (2005) a general overview of the different methods was given. The 

general idea of the method is to impose the effect of the solid structure into the computational mesh 

without actually including the structure. In the present model, we applied a discrete forcing approach using 

ghost cells. The method was described in e.g. Ghias et al. (2007), Mittal et al. (2008), Nasr-Azadani and 

Meiburg (2011) and Liu (2013). The implementation and derivation of boundary conditions for this model 

was shown in Jensen (2014). 

 Some previous examples are seen regarding the application of the immersed boundary method for 

coastal engineering. Petit et al. (1994) presented a model where virtual velocities were applied to simulate 

an impermeable sloping bed. Shen and Chan (2010) applied an immersed boundary model to investigate 

flow around vertical pipelines near a bed and tsunami events initiated by a moving bed. In Peng et al. 

(2012) an immersed boundary method was applied for simulating the interaction between free surface 

water waves and submerged objects. Ha et al. (2014) applied the immersed boundary method for 

simulating the run-up processes of solitary waves where the sloping bed was resolved by the immersed 

boundary. In Koutrouveli and Dimas (2014) the wave interaction with a fully submerged breakwater was 

simulated, however, the breakwater was included as an impermeable structure. 

 The combination of the immersed boundary with a porous media model was shown in van Gent et al. 

(1994) where the model by Petit et al. (1994) was extended to include porous media. However, applications 

involving both impermeable structures by the immersed boundary method and porous media were not 

presented. In Nielsen et al. (2013) the immersed boundary method was combined with a porous media 

model for simulating the flow in a scour protection around offshore wind turbine foundations. The 

combination of the immersed boundary method and porous media modelling, including free surface water 

waves, for detailed simulation of flow around armour stones on breakwaters has, to the authors' knowledge, 

not previously been presented. Our goal with this work was to combine all three model types, i.e., free 

surface water waves, porous media, and immersed boundary, in one modelling framework. 

 The remainder of this paper is organized as follows. In Section 2 the numerical model is described with 

the modifications for handling the combined porous media flow and immersed boundary method. The 

model is validated in Section 3 with special emphasis on the immersed boundary implementation. Section 

4 presents an example where the forces on natural rock stones on a flat bed are investigated in oscillating 

flow. Section 5 presents an application with a breakwater rock toe where the fully coupled hybrid model is 

applied. Final conclusions are given in Section 6. 

 
 
2. Model Description 

 
The Navier-Stokes equations were solved with an additional body force term to accommodate the effect of 

the immersed boundaries. The numerical method was based on a finite volume discretization on a 

collocated grid arrangement.  

 The first modification of the Navier-Stokes equations was introduced in order to handle the flow in 

porous media where a direct resolution of the grains and pores is not possible. Here, a volume averaging of 

the equations was performed in order to derive the VARANS equations. A detailed description of the 

derivation and implementation of the model was given in Jensen et al. (2014). 
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 The second modification of the Navier-Stokes equations was the introduction of the immersed boundary 

method. We based the IBM-model on a discrete forcing approach applying ghost cells. The method was 

described in e.g. Ghias et al. (2007), Mittal et al. (2008), Nasr-Azadani and Meiburg (2011) and was also 

applied in Liu (2013). The solid boundary was imposed via ghost cells by a body force term included on 

the right-hand side of the momentum equation (eq. (2)). The details on the derivation of the immersed 

boundary forcing term in this model was given in Jensen (2014). 

 The final version of the Navier-Stokes equations was formulated as the continuity equation: 
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where ρ is the density of the fluid, ui is the Cartesian velocity vector ui = (u,v,w), p is the excess pressure, gj 

is the j
th

 component of the gravitational vector, μ is the dynamical viscosity, t is the time, and xi are the 

Cartesian coordinates.  

 Due to the volume averaging procedure, the following changes were introduced. Cm is the added mass 

coefficient to take the transient interaction between grains and water into account, < > denotes the volume 

averaged ensemble averaged quantities over the total control volume including the solids of the porous 

media, < >
f
 denoted the volume average over the pore volume, in this case applied for the pore pressure. 

An additional term on the right-hand side, Fi, was included to take account of the resistance force due to the 

presence of the porous media. The extended Darcy-Forchheimer equation was applied to represent the 

resistance force that includes linear and non-linear forces as well as inertia forces to account for 

accelerations. 

 Due to the introduction of the immersed boundary method the last term on the right hand side, B i, was 

introduced. The body force was determined by a first-order temporal discretization of the Navier-Stokes 

equations. 

 The governing equations were solved with the PISO algorithm (Pressure Implicit with Splitting of 

Operator). The details of the PISO algorithm can be found in Issa (1986). It is noted that the body force 

was determined as an explicit solution only based on known values from the current time step and that the 

calculation of the body force was included before the momentum predictor step and it was not updated in 

the corrector step. Ideally, the updating of the body force should be placed inside the PISO loop and an 

iteration is needed to ensure a tight coupling and convergence. We did not explore this option further in this 

paper because the time-step in the PISO algorithm is usually small, which makes the explicit treatment of 

the body force sufficient. 

 

 

3. Validation of the Immersed Boundary Method 

 

A number of test cases validated the numerical model. The implementation of wave generation and 

modelling of free surface water waves was validated in detail in Jacobsen et al. (2012) and Paulsen et al. 

(2014), among others. The porous media implementation was derived and validated in Jensen et al. (2014). 

The immersed boundary implementation was described and validated with several standard test cases in 

Jensen (2014). In this paper, we focus on a brief description of the validation of the immersed boundary 

implementation, which is the third and latest model component in the new hybrid model. 

 The flow past a circular cylinder was simulated for low Reynolds numbers where the boundary layer 

and wake were laminar, hence no turbulence closure was applied. The flow over a sphere for high 

Reynolds numbers was simulated including the LES turbulence closure model. In addition, the interaction 

between the free water surface and the immersed boundary was validated by simulating the run-up of 

regular waves around a vertical cylinder in Jensen (2014). Here, a grid refinement and convergence test 

was also performed to evaluate the required resolution of the computational mesh and the accuracy of the 

solver. 
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3.1 Unidirectional Flow Past a Cylinder 

 

The flow past a circular cylinder is a basic test case that has been widely used for testing the validity of 

numerical solvers. This example has also been used previously for validations of the immersed boundary 

method, see for example Sun et al. (2010), Chiu et al. (2010), Mittal et al. (2008), and Choi et al. (2007). 

For low Reynolds numbers below 200 the flow can be treated as two-dimensional and laminar. Hereby the 

model's general ability to reproduce flow and pressure around a solid object can be investigated without the 

complexity of turbulence modelling. For Re<40 the flow is symmetric while at Re>40 vortex shedding 

occurs. Simulations were performed for Re=[40;60;80;100;120;160]. 

 The cylinder had a diameter of D=0.4m. The model domain was set up with a transverse and 

longitudinal dimension at 50D. The upstream distance from the centre of the cylinder to the inlet boundary 

was 10D. The mesh aspect ratio was 1 in the entire domain. Mesh refinement was applied in areas around 

the cylinder. The largest grid cell dimension was 0.1m while the smallest dimension around the cylinder 

was 0.625cm corresponding to 64 grid cells per diameter, D. Regarding the spatial resolution further details 

are given in Jensen (2014) where a grid convergence test for the present test case was presented. A total of 

68,000 grid cells were applied. The mesh is presented in Figure 1 with a close-up of the local mesh 

refinement around the cylinder.  

 

  
Figure 1. Left panel: Grid for 2D cylinder with refinement zones. Right panel: Close-up of grid near the cylinder 

surface. 

 

 At the inlet boundary a Dirichlet condition was applied for the velocity while a Neumann condition was 

applied for the pressure. At the sides parallel to the flow direction a slip condition was applied for the 

velocity while the pressure was given as a Neumann condition. At the outlet boundary the velocity was 

given as a Neumann condition while a Dirichlet condition was applied for the pressure.  

 For Re=[40;100] comparisons were made with data for the pressure coefficient along the cylinder 

surface given in Park et al. (1998), Kim et al. (2001), and Dennis and Chang (1970). For all tested Re-

numbers comparisons were made for the Strouhal number with experimental data given in Williamson 

(1989) and the base suction pressure coefficient, -CpB, at the trailing edge with data given in Williamson 

and Roshko (1990). 

 Figure 2 shows the pressure coefficient, Cp, along the cylinder half periphery where 0
o
 corresponds to 

the upstream leading edge and 180
o
 corresponds to the downstream trailing edge. For Re=40 the flow was 

stationary with two symmetrical separation zones downstream the cylinder. For Re=100 laminar vortex 

shedding was seen with a vortex street downstream the cylinder. In both cases the pressure distribution 

along the surface of the cylinder was estimated with good agreement with the results given in Park et al. 

(1998), Kim et al. (2001), and Dennis and Chang (1970). The vortex shedding frequency, represented by 

the Strouhal number, was also estimated with good accuracy.  
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Figure 2. Pressure coefficient on the surface of the cylinder. A: Re=40. B: Re=100. 

 

3.2 Unidirectional Flow Past a Sphere 

 

For high Reynolds numbers the flow becomes turbulent and may therefore not be treated as two-

dimensional. For validation of the immersed boundary method for three-dimensional high Reynolds 

numbers flow, a sphere was simulated at high Reynolds numbers. The Smagorinsky LES model was 

applied for the turbulent closure. In order to address the effect of including the turbulent closure a 

corresponding simulation was performed without the LES model. The simulations were performed for 

Re=1.62∙10
5
 corresponding to the experimental data presented in Achenbach (1972). 

 The sphere had a diameter of D=1.0m. The model domain was set up with a transverse and longitudinal 

dimension of 40D. The upstream distance from the centre of the sphere to the inlet boundary was 10D. The 

mesh aspect ratio was 1 in the entire domain. Mesh refinement was applied in areas around the sphere. The 

largest grid cell dimension was 0.3m while the smallest dimension around the sphere was 0.019m. A total 

of 493,000 grid cells were applied. 

 At the inlet boundary the velocity was specified as a Dirichlet condition while a Neumann condition was 

applied for the pressure. At the sides parallel to the flow direction a slip condition was applied for the 

velocity while the pressure was given as a Neumann condition. The outlet boundary was specified with a 

Neumann condition for the velocity and a Dirichlet condition for the pressure. Figure 3 present the flow 

field around the sphere in terms of the velocity and pressure contours. 

 

 
Figure 3. Flow field around the sphere at Re=1.62∙105. A. Velocity contours. B. Pressure contours. 

 

 Figure 4 (left panel) presents the distribution of the pressure coefficients averaged over 10 minutes 

compared with data given in Achenbach (1972). The model was found to provide a good representation of 
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the pressure distribution around the sphere. Especially it is noted that the pressure on the downstream side 

of the sphere and the base pressure at 180
o
 was well predicted. This implies that the flow separation was 

estimated correctly as the downstream and base pressure is sensible to the position of the separation point. 

 

  
 

Figure 4. Pressure coefficient on the surface of the sphere at Re=1.62∙105. Left Panel: Turbulent closure included in 

terms of the Smagorinsky LES model. Right panel: No turbulence closure. 

 

 For the results shown in Figure 4 (left panel) the LES model was applied. The effect of the LES model 

was addressed by a repetition of the simulation where no turbulence closure was applied. Figure 4 (right 

panel) presents the results where it is seen how the pressure from about 60
o
 and further downstream was 

higher than the experimental measurements. The pressure drop is caused by the accelerating flow from 0
o
-

90
o
. When the flow separates from the surface of the sphere the negative pressure at this point continues 

around the sphere. In this case, where the pressure was too high it indicates that the separation point was 

positioned too far upstream compared to the position in the measurements. Hereby the pressure has not 

decreased sufficiently before the separation occurs. 

 The comparison between the solution with and without the LES turbulence closure shows that a better 

solution was obtained by applying the LES model. It should be noted that a detailed verification of the LES 

model in relation to the IBM implementation is recommended. This is part of the future work planned for 

the present model development. 

 

 

4. Stability of Erosion Protection on a Flat Bed 

 

In this example, we show how the model can be used to evaluate the lift force on erosion protection cover 

stones as function of the packing density and the KC-number. The force variation was found for the 

individual stones when exposed to an oscillating flow. The same simulation was repeated with stones 

placed with two different packing densities defined as dense packing with a distance between the stones of 

approximately one stone diameter, and sparse packing with a distance of approximately 2 diameters 

between the stones. These two packing densities were repeated at three KC-numbers. 

 A number of natural stones were mapped in a 3D scanner to obtain a digital representation of the surface 

of the stones. The stones were selected from the hydraulic laboratory at DTU and the scanning was 

performed at Texas University at San Antonio (UTSA). To achieve a random packing of the stones the 

method referred to as bullet physics (http://www.bulletphysics.com) was applied to place the stones 

randomly on the bed. 

 Figure 5 shows the stones in the final placement used for the simulations. The stones had a diameter of 

dn=1.0m which was achieved by scaling the stones based on the volume of each stone. A total of 17 stones 

covered an area with a horizontal dimension of (5.6 x 5.6) m for the dense packing density and (7.6 x 7.6) 

m for the sparse packing density. A hexahedral base mesh was applied with a uniform cell size of 0.2m and 

an aspect ratio of 1. Two rectangular refinement zones were applied around the stone bed. Furthermore, an 

additional refinement level was applied locally around the immersed boundary, which provided a resolution 
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around the stones of 0.025m. A total of 1.1M grid cells were applied for the dense packing and 1.5M grid 

cells for the sparse packing. The area covered with stones was relatively small, however, periodic boundary 

conditions were applied in order to simulate the effect of a larger area being covered with stones.  

  
 

Figure 5. Natural stones randomly placed on an impermeable bed. A. Plan. B. Section view. Left panel: dense packing. 

Right panel: sparse packing. 

 

 The oscillating flow was generated by a body force introduced in the momentum equation. Hereby, the 

flow was driven to a sinusoidal motion with periods of T=[4;8;12]s and a maximum velocity at Um=1m/s. 

This corresponds to KC=[4;8;12] based on the stone diameter. The model provides the forces on each stone 

in three dimension. From this, it is possible to investigate the variability of the forces between the 

individual stones and it becomes obvious that important parameters are the individual shape, placement, 

and orientation of the stones. In this paper, the results are condensed into an exceedance probability plot for 

the lift forces, which is expressed as an average of the exceedance curves for all stones. In this way, it is 

possible to evaluate the effect of the packing density and the KC-number as a whole for the entire layer of 

cover stones.  

 Figure 6 shows the exceedance probability of the positive lift force for the three KC-numbers and for the 

dense and sparse packing density, respectively. At the dense packing the effect of the KC-number was 

found to be small, i.e., the maximum lift force was similar at all tested KC-numbers. By examining the 

details of the flow field, it was seen that the dense packing prevented different flow regimes to develop at 

the different KC-numbers hence eliminating the KC-effect on the lift force.   

 

 
Figure 6. Mean exceedance probability on the lift force for dense and sparse packing densities at three KC-numbers. 

Full line: dense packing. Dashed line: sparse packing.  
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 The effect of the packing density was found to be most pronounced at the two highest KC-numbers. At 

the sparse packing density the maximum lift force increased with approximately 68% compared to the 

dense packing. This was not the case for the lowest KC-number where the lift force only increased with 

approximately 10%. At the low KC-number the amplitude of the oscillation was so small that the flow 

around one stone only interfered very little with the neighboring stones, both at the dense and sparse 

packing. For the higher KC-numbers the amplitude was large enough for the flow to pass over more than 

one stone at each oscillation. Therefore, the flow around each stone and the developed flow regimes were 

affected by the distance from one stone to the neighboring stone. 

 

 

5. Stability of a Breakwater Rock Toe Structure 

 

As the second example, a rubble mound breakwater rock toe was simulated with the full hybrid model. The 

breakwater core, filter and main armour layers were simulated with the porosity model while the rock toe 

was resolved with the immersed boundary model. The stability of the toe structure of a breakwater is of 

general interest regarding the overall stability of the structure. The toe acts as support for the main armour 

layer as well as protection against scour. Some recent examples of investigations of rock toe stability were 

presented in Muttray (2013) and van Gent and van der Werf (2014). Stability formulas were derived based 

on model experiments taking into account the effect of, e.g., toe dimension, wave steepness and water 

depth. This example shows how the hybrid model can be applied to investigate the toe stability as a 

function of the surf similarity parameter. The actual forces on the stones were evaluated as well as the flow 

in and above the toe. 

 It is noted that a general investigation of stability would apply irregular sea states based on a defined 

wave spectrum. This is also apparent from the design formulas in, e.g., Muttray (2013), and van Gent and 

van der Werf (2014) where spectral quantities for wave heights and periods are applied. In the following it 

is demonstrated how some details of the physical processes can be investigated by means of the hybrid 

model. For this, shorter time series of regular waves were applied. 

 Figure 7 presents the general layout of the breakwater including the toe structure. The breakwater 

consisted of a core, a filter layer, and an outer armour layer. Both the front and rear side had a slope of 

1:1.5. The crest height was 30m and the crest width was 6m. 

 
Figure 7. General layout of the breakwater for rock toe simulations. 

 

 

5.1 Breakwater Setup 

 

The main part of the breakwater that consisted of the core, filter, and armour layers was modelled with the 

porosity model. The characteristics of the individual components of the main breakwater are given in 

Figure 8. The resistance parameters, α and β, for the porosity model were set to α=500 and β=2.0 according 

to Jensen et al. (2014).  

 The computational domain had a dimension of (length x width x height) (800 x 10.5 x 40) m with the 

breakwater toe positioned at a distance of 600m from the inlet boundary. A hexahedral mesh was applied 

with a uniform grid spacing in all directions of 0.5m. Grid refinement was applied in a band around the free 

water surface with one refinement level providing a grid spacing of 0.25m corresponding to 20 points per 

wave height. The grid around the main breakwater structure was also refined with one refinement level 
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where the porosity model was applied. Further refinement was applied at the toe structure as described in 

the following. Including the toe refinement the total number of grid cells was 2,400,000. 

 Each individual stone in the toe section was resolved in the model. For this, a detailed representation of 

the stones was needed. A number of natural stones were mapped in a 3D scanner as for the previous 

example with stones on a flat bed. To achieve a random packing of the stones a six-degree-of-freedom rigid 

body motion solver was applied to arrange the stones. Again, the libraries by Bullet Physics were used. 

Here the stones were dropped along an impermeable sloping bed, which gave a natural random placement 

at the toe of the breakwater. Figure 8 (left panel) shows the final placement of the stones next to the main 

part of the breakwater that was modelled with the porosity resistance model. 

 The overall grid was set up with refinement levels around the free water surface and the porous 

breakwater structure. Three additional refinement levels were applied around the toe structure providing a 

minimum grid size near the stone surfaces of 3.1cm corresponding to 64 grid cells per stone diameter, d50. 

This corresponded to the same relative resolution as for the validation case for unidirectional flow past a 

cylinder in Section 3.1. The computational mesh is shown for a vertical section through the toe structure in 

Figure 8 (right panel). The grid refinement was optimized with a refinement procedure that detected the 

solid surface of the stones and applied refinement levels around this surface. As such, the number of grid 

cells was optimized as the refinement for the smallest grid cells around the stones was only present where 

it was needed for the immersed boundary. 

 

 
 

Figure 8. Left panel: Placement of rocks for the toe structure. Right panel: Close-up of grid refinement around the toe 

rock stones. The outer contours of the stones for the presented vertical section are shown with black lines. The main 

porous layers of the breakwater and the sand bed are indicated with grey. 

 

5.2 Wave Conditions 

 

Regular waves were applied for investigating the forces and loading process. Four wave conditions were 

simulated with constant wave height and varying wave period as shown in Table 1. The surf similarity 

parameter, ξ0 = tan(γ)/(H0/L0)
1/2

, was defined in e.g. Battjes (1974) where γ is the slope of the bed, H0 is the 

deep water wave height, and L0 is the deep water wave length. A water depth of h=18m was applied for all 

simulations. The waves were generated as Stokes 5
th

 order waves by means of relaxation zones according 

to Jacobsen et al. (2012). 

Table 1. Wave conditions for breakwater rock toe simulations. 

 

Wave No. H (m) T (s) ξ0 Breaker type 

1 5.13 6.7 2.31 Plunging 

2 5.13 10.1 3.07 Plunging 

3 5.13 16.8 4.39 Surging 

4 5.13 20.1 5.11 Surging 

 

5.3 Forces on and Stability of the Rock Toe 

 

The stones in the toe structure were placed in approximately two layers as shown in Figure 8. The forces 

were extracted for stones placed in the top and bottom layer. The effect of having two layers was apparent 

for both wave periods. In the bottom layer, the stones were sheltered and experienced a low lift force. At 
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the top layer, the stones were exposed to the flow acceleration above the toe that created a large lift force. 

For stability the top layer is of interest in order to ensure that the destabilizing forces do not exceed the 

stabilizing forces. Figure 9 shows the flow field around the stones for the wave condition with a wave 

period of T=20.1s at the instance in time where the largest lift forces occur at the top layer.  

 The stones experienced similar loading cycle for the different wave lengths. For the stones in the top 

layer, the loading cycle was oscillating in a regular manner with two positive lift events during one wave 

period. This was caused by the low pressure above the stone due to flow acceleration both during run-up 

and run-down. The positive lift force was larger during run-up than run-down. For the stones in the bottom 

layer, only one positive lift event was found for each wave period. This was associated with the run-up 

stage while the flow was dampened sufficiently to prevent positive lift during run-down. 

 

 
Figure 9 Velocity field for wave period T=6.7s at one instance in time when maximum lift force occurs at the top layer. 

 

 In this paper, we have condensed the results into the maximum lift force as function of the surf 

similarity parameter at the four wave conditions ranging from the plunging to the surging breaker regime. 

Figure 10 presents the maximum lift force over one wave period. First, it is noted that the lift force 

increased for increasing surf similarity parameter. This is a result of larger orbital velocities at the bed for 

larger wave lengths as well as the differences in the run-up and run-down process for the different surf 

similarity parameters. 

 Regarding stability, the submerged weight of the stones is indicated in Figure 10 based on the diameter, 

d50. The simulated wave conditions did not cause lift forces that exceeded the submerged weight of the 

stones. It is noted that based on the most recent rock toe stability formulas in Muttray (2013) and van Gent 

and van der Werf (2014) the applied wave conditions should not cause instabilities. 

 

 
Figure 10. Maximum lift force as a function of the surf similarity parameter, ξ0. The submerged weight of the stones is 

indicated based on the diameter, d50. 

 

 

6. Conclusions 

 

The present paper presents a hybrid modelling approach for coastal engineering problems with two 

application examples. The new model combines a standard Navier-Stokes solver with a porous media 
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resistance model and an immersed boundary model for solid structures. The following conclusions are 

summarized: 

 

1. A discrete forcing procedure for immersed boundary modelling was implemented in the 

OpenFoam CFD model based on an additional forcing term in the momentum equation. 

2. The flow around a 2D cylinder and 3D sphere was represented with good accuracy compared to 

experimental data. 

3. The immersed boundary model was coupled with the porous media resistance model for 

simulation of solid structures near sand and gravel materials. 

4. The possible extent of the model was exemplified by simulation of flow in a stone cover layer on 

a horizontal bed where the lift force was found to increase with approximately 68% when the 

distance between the stones was doubled from 1 to 2 stone diameters at the high KC-numbers of 8 

and 12. 

5. Finally the full hybrid model was used to simulate the loads on a breakwater rock toe structure 

where the lift forces were found to increase with an increasing surf similarity parameter.  
 

Further work is recommended on this topic. Currently, future work is planned to include a detailed 

validation of the LES turbulence closure in relation to the IBM method and inclusion of validation cases 

for stones placed inside porous materials Rigid-body-motion solvers for movements of armour stones are 

also an area that may be of interest for coastal engineering problems. 
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