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Abstract 
 
Observations in a mangrove in the Whangapoua Harbour, New Zealand, have shown that deposition rates are greatest 
in the fringing zone between the tidal flats and the mangrove forest, where the vegetation is dominated by a cover of 
pneumatophores (i.e. pencil roots). Current speeds and suspended sediment concentrations dropped substantially across 
this zone. Near-bed turbulence within the fringe was substantially lower where the pneumatophore canopy was denser, 
facilitating the enhanced deposition in this zone. However, the near-bed conditions were not the primary control on the 
instantaneous sediment concentrations at this site. The total deposition across the different zones was the combined 
result of the reduced near-bed turbulence inside the vegetation and the larger-scale dynamics over the spatially variable 
vegetation cover, along with other confounding factors such as changing sediment inputs.  
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1. Introduction 
 
Mangrove forests occur in intertidal areas at tropical and sub-tropical latitudes.  Many of these forests are 
in low energy environments that are exposed to limited hydrodynamic forces. Mangroves have aerial roots 
that allow for root respiration above the water-logged soils (Tomlinson, 1986), and enable the trees to cope 
with the regular flooding of their environment by saline water. The shape of these aerial roots varies 
depending on the mangrove species, with the common root types being stilt roots, pneumatophores (pencil 
roots), knee roots and plank roots (Tomlinson, 1986). During high tides, these root systems are submerged, 
and together with the lower parts of the tree’s stem and canopy, they impose a significant drag on ambient 
water movements. Consequently, mangroves have been observed to be effective attenuators of tidal 
currents (Horstman et al., 2013; Kobashi and Mazda, 2005), wind waves (Horstman et al., 2014; Mazda et 

al., 2006; Quartel et al., 2007) and even of longer wavelength tsunami waves (Danielsen et al., 2005; 

Kathiresan and Rajendran, 2005), provided the forest is of sufficient width (Mullarney and Henderson, 
2017). 

Together with the attenuation of currents and waves, mangroves reduce coastal erosion and facilitate 
sediment deposition (Furukawa and Wolanski, 1996; van Maanen et al., 2015; Van Santen et al., 2007). 
These biophysical interactions provide mangroves with a natural resilience which enables them to recover 
from erosion events as well as to combat land subsidence and relative sea level rise through enhanced 
sediment trapping (Gedan et al., 2011; Krauss et al., 2014; Stagg et al., 2016), provided an adequate 
sediment supply exists (Horstman et al., 2015; Willemsen et al., 2016). Consequently, mangroves are one 
of the intertidal ecosystems that have recently attracted attention for their ecosystem engineering capacities, 
offering a ‘soft solution’ to the multi-faceted challenges coastal communities are facing due to global 
(climate) change (Barbier et al., 2008; Bouma et al., 2014; Gedan et al., 2011; Temmerman et al., 2013). 

The sediment trapping capacity of mangroves is key to their long-term resilience and the coastal 
protection they can provide. However, actual deposition rates are highly dependent on vegetation properties 
and geomorphological settings of the mangroves. In fact, while Young & Harvey (1996) observed a 
positive correlation between accretion rates and root densities in mangroves, erosion has also been 
observed in mangroves with relatively high root densities (Krauss et al., 2003; Spenceley, 1977). This 
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contrast in accretionary trends in mangroves depends on the balance between energy dissipation due to 
enhanced drag forces and the turbulence generation around these root systems (Norris et al., 2017).  

While the enhanced drag in aquatic vegetation tends to diminish horizontal current velocities within the 
vegetation canopies, currents above and/or around the vegetation accelerate, causing velocity gradients 
over the canopy margins (Dunn et al., 1996; Nepf, 2012b; Yager and Schmeeckle, 2013). In the case of 
sufficiently dense canopies, shear over the canopy edges can give rise to canopy-scale turbulent motions 
(Ghisalberti and Nepf, 2005; Zong and Nepf, 2010). The penetration of these canopy-scale eddies into the 
vegetation canopy is reduced for greater vegetation densities. In addition to the canopy-scale turbulence, 
stem-scale turbulent motions are generated in the wakes of individual canopy elements, adding to the 
within-canopy turbulence  (Mullarney and Henderson, 2017; Nepf, 2012a). Whereas increasing vegetation 
densities enhance the production of stem-scale turbulence, the concurrent reduction of the within-canopy 
flow velocity in denser canopies eventually causes the turbulence production to decrease (Nepf, 1999). 

Elevated turbulence levels at the edges of vegetation canopies play a role in entraining sediments and 
sustaining enhanced suspended sediment concentrations (Tinoco and Coco, 2014). Once sediments are 
transported into the less dynamic zone within the vegetation canopy, sediment settling occurs. Both in an 
artificial salt marsh canopy on an intertidal flat and in an artificial eelgrass canopy in a flume, these 
processes were found to create scour zones before or around the leading edges of a dense canopy and to 
enhance deposition further into the dense canopy (Bouma et al., 2007; Le Bouteiller and Venditti, 2015). 
The same experiments showed that lower plant densities reduced scour at the leading canopy edge, 
associated with reduced local turbulence levels, and a more uniform deposition pattern was observed 
throughout these low-density canopies, associated with enhanced through-canopy flows.  

The present study compares synoptic field observations of sediment deposition and turbulence in 
canopies of mangrove pneumatophores in order to obtain a better understanding of the sediment dynamics 
in mangrove fringes. These pneumatophore canopies show resemblance with the rigid dowel canopies that 
have been widely studied (e.g. Dunn et al., 1996; Ghisalberti and Nepf, 2005). However, turbulence 
patterns in variable-height pneumatophore canopies are found to deviate substantially from those in 
idealized uniform-height dowel canopies (Horstman et al., in prep.). The aim of this work is: (1) to study 
concurrent turbulence patterns and suspended sediment concentrations in a mangrove fringe; and (2) to 
examine links between these turbulence patterns, larger-scale transport processes and sediment deposition 
rates across a mangrove fringe. 

 
 

2. Methods 
 
2.1. Study site 
 
Mangroves in New Zealand are at the southern limit of their global distribution, which extends from about 
31oN in southern Japan to about 39oS in southern Australia, due to their intolerance to frost (Tomlinson, 
1986). However, New Zealand mangroves are rapidly expanding due to increased sedimentation in 
estuaries following agricultural development and urbanization (Lovelock et al., 2007; Swales et al., 2007). 
The prograding trend of the mangroves in New Zealand makes for a suitable environment to study 
sediment deposition in mangrove ecosystems. 

This study focusses on a cross-shore transect through a prograding mangrove forest located in the 
Whangapoua Harbour (Figure 1: 36°44’S, 175°39’E). Aerial photographs from the site show that no 
mangroves were present along this transect in 1971, whereas there currently exists a 300 m wide fringe of 
mangroves in front of a low stop bank on the southern edge of the Matarangi land spit (Figure 1.c).     

Mangroves in New Zealand are mono-specific, consisting of relatively small Avicennia marina trees. 
The field site shows a characteristic zonation comprising an intertidal flat that is fronting a fringing region 
dominated by a ‘carpet’ of aerial roots that in turn precedes the denser mangrove forest, similar to many 
mangrove forests encroaching low-gradient tidal flats (e.g. Horstman et al., 2013; Norris et al., 2017). The 
intertidal flats in this area are locally covered with patches of seagrass (Zostera muelleri), showing up as 
dark patches in Figure 1.c. In the fringing region, the trees are sparser than in the forest and relatively 
small, yet there is a dense cover of pneumatophores (pencil roots) protruding from the bed. The forest has 
an open canopy consisting of trees ranging between about 1 and 3 m of height. The majority of the trees are 
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shrub-like with heights of less than 1.5 m, but these are interspersed with taller individuals that probably 
established at an earlier stage. 

     

 
Figure 1. (a) Location of the study site within New Zealand, (b) overview of the Whangapoua Harbour and the 
Matarangi land spit, and (c) close-up of the transect across the mangrove fringe just south of Matarangi. The 

experimental transect is indicated with a white line (map data: Google, DigitalGlobe). 
 
The study site is exposed to semi-diurnal tides with a maximum spring tide of 1.2 m above mean sea 

level (MSL) and a maximum spring tidal range of 2.5 m (NIWA, 2017). The elevation of the transect 
gradually increases from just above MSL at the start of the tidal flat, up to the maximum high water spring 
mark at the stop bank behind the forest. The mangrove fringe is located at an elevation of about 0.5 m 
above MSL. 

 
2.2. Data collection 
 
A suite of instruments was deployed at the field site from 11-19 April 2016, with some extended 
deployments lasting until 4 May 2016. Instruments were placed at nine stations along the transect, covering 
the three characteristic zones as outlined above as well as the channel that dissects the tidal flat (Figure 2).  

For high-resolution velocity and turbulence measurements, an array of three vertically-separated Nortek 
Vectrino Profilers was used (Figure 3.a), each producing a vertical velocity profile of 30 cells of 1 mm, 
with a sampling rate of 50 Hz (cf. Mullarney et al., 2017). These Vectrino arrays were deployed for one 
tidal cycle at a single location and were then relocated over low tide. All deployments of the vertical 
Vectrino array concentrated on the fringing region around station 5 (Figure 2), to examine the 
hydrodynamics over the variable density of the pneumatophore cover. To monitor the larger-scale tidal 
currents across the fringe,  upward looking Nortek Aquadopp Current Profilers were mounted on the bed at 
stations 3 and 7 and an upward looking Nortek Vector Current Meter was deployed at station 2 (Figure 2). 
The Aquadopps were programmed in high-resolution mode, providing a vertical profile consisting of 18 
cells of 25 mm, ranging from approximately 18-63 cm above the bed, with a sampling rate of 8 Hz. The 
Vector recorded single point velocities at approximately 37 cm above the bed at 16 Hz.  

Suspended sediment concentrations were monitored with independently logging Campbell Scientific 
OBS-3 sensors at stations 2 and 7 and with a Turner Scufa turbidity meter at station 3, at 37 cm, 34 cm and 
34 cm above the bed, respectively. Time-averaged turbidity readings were stored every 5 or 10 minutes. 
Additionally, a vertical array of three Seapoint turbidity meters (connected to two RBR Concertos) was 
deployed at station 5 to continuously measure turbidity with a sampling rate of 2 Hz. The heights of this 
vertical array were similar to the heights of the Vectrino profiles, providing concurrent high-resolution 
vertical profiles of both the hydrodynamics and suspended sediment concentrations in the mangrove fringe. 
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Figure 2. Cross-section of the study site in the Whangapoua Harbour. Instrument stations are marked with + and 
locations of sediment traps are indicated with ▲. 

 

 
 

Figure 3. Field instrumentation in the mangrove fringe (around station 5 in Figure 2): (a) three vertically stacked 
Vectrino Profilers measuring flow patterns within, at the top of and above the pneumatophore canopy, (b) a set of three 
sediment traps that have just been deployed on 11 April 2016 and (c) one of these sediment traps upon collection on 15 

April 2016, after 7 M2 tidal cycles. 
 
Sediment deposition was monitored with sediment traps that were deployed for periods of a couple of 

days at a time. Sediment traps consisted of smooth terracotta discs with a 33 cm diameter that were leveled 
with the bed to induce minimal disturbance to the flow (Figure 3.b-c). The bottom sides of the discs were 
covered with tape to allow for easy cleaning upon retrieval. Sets of three traps each were deployed on the 
flat, in the fringe and in the forest (locations indicated in Figure 2).  

In addition to these instrument deployments, an RTK GPS (Trimble) was used to survey the elevation 
profile along the transect. Local geodetic marks (Land Information New Zealand) were used to obtain an 
accurate vertical datum for this survey. Additionally, vegetation densities were quantified along the transect 
and at the vertical arrays of the Vectrino Profilers. For the vegetation densities along the transect, numbers 
(N), heights (h) and diameters (d) of the trees were surveyed in plots of 10x10 m2 and the same was done 
for the pneumatophores in 5 subplots of 1x1 m2 within each main plot. Vegetation surveys at the vertical 
Vectrino arrays comprised pneumatophore measurements in a 1x1 m2 plot centered around the array. These 
data allowed for the computation of cross-sectional vegetation densities (φ = Nπd2/4).  
 
2.3. Data processing 
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The data obtained with the Vectrino profilers required intensive pre-processing: first, data were transformed 
according to an improved calibration matrix obtained from Nortek after completion of the field 
experiments; second, the transformed data were filtered to remove correlations ≤70% and signal-to-noise 
ratios ≤15 dB (cf. Rusello et al., 2006); and third, the Doppler noise removal procedure of Hurther & 
Lemmin (2001) was applied to correct for the noise in the turbulent velocities by compensating for the 
covariance between the two vertical velocity signals that are obtained by the Vectrino. Subsequently, time-
averaged (u , v , w ) and turbulent ( 'u , 'v , 'w ) velocity profiles were resolved, with u, v and w denoting 
observed velocity components in eastward, northward and upward (ENU) directions, respectively. Total 
horizontal velocities 2/122 )( vuU +=  and turbulent kinetic energy ( )222 '''21 wvuk ++=  were then 
computed for every data record. Regardless of the rigorous pre-processing, however, these velocity and 
turbulence profiles showed excessive variability along the vertical and hence this paper only presents the 
most reliable observations in the ‘sweet spot’ located at 50 mm below each probe (Nortek, 2011). 

Data obtained with the Aquadopps were filtered to remove low signal strengths (<125 counts). Filtered 
data were averaged over bursts of 8.5 minutes (4096 samples) to compute time-averaged velocity profiles. 
Total horizontal velocities were then computed for every data record (as above) and depth-integrated over 
the observed velocity profiles. Data obtained with the Vectors were filtered to remove low-quality data with 
correlations ≤70% (cf. Rusello et al., 2006) and were rotated to earth coordinates (ENU) as well. 
Subsequently, the same parameters as above were calculated over blocks of 8.5 minutes (8192 samples). 

The turbidity sensors recorded suspended sediment concentrations in NTU (Scufa, Seapoint) or a proxy 
thereof in milliVolts (OBS). These sensors were calibrated in a salt-water tank in the lab using sediment 
obtained from the field site. Water samples collected at each concentration increment were filtered 
(Whatman GF/C filters) and oven dried (24 hrs at 105°C) to compute the suspended sediment 
concentrations in the tank.  Linear fits to the obtained data produced highly significant calibration curves 
(r2=1.00) that were then applied to compute suspended sediment concentrations from the output of the 
turbidity sensors. Additionally, the 2 Hz output of the Seapoint turbidity meters was averaged over 2.5 
minute intervals and, lastly, outputs of all turbidity meters were filtered to remove data when the sensors 
were emerged and to remove artificial spikes that were produced upon submergence and emergence of the 
sensors. 

Trapped sediments were processed to obtain the total dry mass of the yields per trap. The bulk of the 
sediments on the traps was scraped off and processed directly, after which the remainder of the deposits 
was washed off the traps and filtered (Whatman GF/C filters). The total yields of the traps were then oven 
dried (at 105°C) until a constant dry weight was obtained. 
 
 
3. Results 

 
3.1 Turbulence in mangrove pneumatophores  
 
Vertical profiles of the hydrodynamics within the mangrove fringe were collected with the vertical array of 
Vectrino Profilers at locations with sparse and dense pneumatophore covers. Pneumatophore densities 
within the 1 m2 area surrounding the Vectrino arrays were 84 and 219 m-2, respectively, resulting in canopy 
densities presented in Table 1. The average heights of the pneumatophores in these plots increased with 
density and were about 7 and 12 cm, respectively. Additionally, the plot with the sparse pneumatophore 
cover included some patches of seagrass of about 5 cm length, which were also found on the tidal flat. The 
density of the dense pneumatophores at the fringe was similar to the vegetation density inside the forest. 

The velocities obtained in the densely and sparsely vegetated parts of the fringe differed substantially 
(Table 1). Both within and above the sparser canopy, tidal currents were found to be stronger than at the 
denser pneumatophore canopy, with maximum flow speeds that were up to 35% higher at about 0.4 m 
above the bed and 108% higher near the bed within the sparse canopy (Figure 4.a-b). Consequently, 
maximum depth-averaged (over the three observation points) velocities were 8.7 cm/s for the sparse 
canopy and only 5.8 cm/s for the dense canopy.  

At the dense canopy site, highest turbulence was observed at 0.4 m above the bed, while turbulence was 
very low within the pneumatophores (Figure 4.c). Conversely, for the sparse canopy, turbulence was lowest 
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at 0.4 m above the bed and substantially higher near the bed within the pneumatophores (Figure 4.d). The 
maximum turbulence inside the sparse canopy was 3.5 times greater than in the dense pneumatophores, 
whereas turbulence at 0.4 m height was 6 times lower over the sparse canopy than over the dense canopy.  

 
Table 1. Biophysical parameters for the flat, fringe and forest zone of the study site. 

 
 φ Umax,flood Umax,ebb kmax kmax,bed 
 [-] [m/s] [m/s] [m2/s2] [m2/s2] 

Flat 0 0.22 0.20 - - 

Fringe - sparse 0.0032 0.14 0.14 3.4·10-4 2.2·10-4 

Fringe - dense 0.0084 0.10 0.08 7.0·10-4 6.2·10-5 

Forest 0.0081 0.05 0.05 - - 

 
 

Figure 4. Synoptic overview of vertical variations of (a,b) tidal currents, (c,d) turbulent kinetic energy and (e,f) 
suspended sediment concentrations at two locations in the fringe with a dense and sparse pneumatophore density, 
respectively (cmab = cm above bed). Suspended sediment concentrations were all obtained in the dense canopy, at 
heights coincident with the hydrodynamic data (at 2, 25 and 43 cmab, respectively). Vertical dotted lines mark the 

occurrence of high tide. 
 
At both locations, a turbulence peak was observed to coincide with the maximum flow speeds on the 

incoming tide. Above the dense canopy, turbulence mainly declined after this peak had occurred and there 
was only a minor increase of the near-bed turbulence at the final stages of ebb tide (Figure 4.c). 
Conversely, turbulence in the sparse canopy showed a distinct minimum on high slack tide and then 
increased again from the start of ebb tide towards a second maximum that was reached with the highest 
velocities during the ebb tidal stage (Figure 4.d).   

Observed suspended sediment concentrations (C) above the pneumatophore canopy were low on both 
days, not exceeding 10 mg/L. Close to the bed, however, concentrations fluctuated between 100-125 mg/L 
(Figure 4.e-f). These observed near-bed sediment concentrations showed a gradual increase over time on 
14 April (Figure 4.e), suggesting that sediment may have been settling from the upper parts of the water 
column while the turbulence reduces (Figure 4.c). However, the concentrations at the upper observation 
points and on 15 April did not show any major trends over time and were uncorrelated with the locally 
observed velocity and turbulence variations. 
 
  

3.2 Variations of hydro- and sediment dynamics across the fringe 
 

Simultaneously with the turbulence observations within the fringe, currents and suspended sediment were 
monitored along the entire transect as to provide information on the larger scale dynamics on the flats, at 
the fringe and inside the forest. 

Currents at stations 2, 3 and 7 were consistently perpendicular to the transect, directed east-southeast 
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during flood tide and west-northwest during ebb tide. These directions are roughly parallel to the main 
direction of the channel fronting the tidal flat and also coincide with the orientation of the sub-estuary 
wherein the study site is located (Figure 1.c). Figure 5.a-c present time series of the time-averaged total 
horizontal velocities U, showing a clear deceleration of the currents along the transect. Across the tidal flat, 
between stations 2 and 3, observed maximum currents during the flood stage reduced by 30-45% over a 
distance of 120 m. Across the fringe zone, between stations 3 and 7 which are only 40 m apart, maximum 
currents during the flood stage reduced by 65-75%. During the ebb stage, currents through the fringe and 
over the flat were slightly weaker than during the flood stage over the first two days, by up to 25%. This 
inequality between the maximum velocities on both tidal stages was not observed anymore inside the forest 
(Figure 5.a-b). On 19 April, when the high tide was 15-20 cm lower than on the 14th and 15th, maximum 
current velocities were similar on both tidal stages at all the three locations (Figure 5.c).  

 
   

Figure 5. Time-series of (a-c) current velocities and (d-f) concurrent suspended sediment concentrations at three 
positions along the transect during three different M2 tidal cycles on 14, 15 and 19 April 2016, respectively. Vertical 

dotted lines mark the occurrence of high tide (at station 3, for station locations see Figure 2). 
 

Typically, currents at the front of the flat (station 2) peaked at the start of the flood tide and at the end of 
the ebb tide. This pattern was found to change in front of the mangrove fringe (station 3), where velocities 
peaked around mid-tide during both the flood and the ebb stages. The pneumatophore vegetation at the 
fringe (for densities see Table 1) added a near-bed drag component that limited the flow speeds at lower 
water depths in this area, causing the velocities of the currents at both tidal stages to peak at higher water 
depths. Inside the forest (station 7), where the vegetation density was greatest, no pronounced peak of the 
flow speeds was observed. 

Suspended sediment concentrations were low and generally did not exceed 10 mg/L (Figure 5.d-e). 
Sediment concentrations were monitored at similar heights above the bed (~1-2 cm different) and so spatial 
differences in sediment concentrations could be interpreted to provide insight into cross-shore transport 
processes. The observed suspended sediment concentrations generally had a maximum value upon or 
shortly after submergence and showed a slight decrease during flood tide, even while the currents were 
increasing towards maximum flood. Conversely, after high slack tide the concentrations gradually 
increased again as with the increasing flow speeds on the ebb tidal stage, with the increase persisting after 
maximum current velocities had been reached. The observed increase of the concentrations between 
stations 2 and 3 suggests the currents entrain sediments from the (partly bare) flats in front of the 
mangroves. Conversely, sediment concentrations declined between the start of the fringe (station 3) and the 
interior of the forest (station 7), indicating (enhanced) deposition in these zones.  

Suspended sediment concentrations were an order of magnitude greater on 19 April (Figure 5.f) 
compared to the previous two days. This was caused by a torrential rain storm on the 17th (114 mm of 
rainfall in 24 hours), which had released a large amount of debris and sediments from the catchment into 
the estuary. On the following days, high suspended sediment concentrations were observed on the initial 
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stages of flood tide all along the transect, with concentrations of up to 100 mg/L just beside the channel, 
which rapidly declined during high tide and remained constant around 10-15 mg/L during the subsequent 
ebb tide. These sediment concentrations showed a substantial drop between stations 2 and 3, indicating that 
the suspended sediments were largely deposited on the flat. The greater sediment concentrations at stations 
3 and 7 still showed a cross-shore decrease over the fringe during most of the tide, apart from the final 
stages of ebb, corroborating sustained deposition in this zone.  

 
3.3 Sediment deposition rates 

 
Sediment trap yields were analyzed for two subsequent time intervals: 11-15 April and 17-19 April, 
covering 7 and 4 M2 tidal cycles, respectively. Both datasets clearly show enhanced trapping of sediments 
in the forest’s fringe. Sediment accretion, standardized to a deposition rate per tide, was 2.5-3 times greater 
in the fringe than on the adjoining tidal flats or within the forest (Figure 6). Sediment traps in the fringe 
were located in the area of dense pneumatophores (see Figure 3), where near bed turbulence is small, 
consistent with the results shown in Figure 4. Due to the increased sediment load of the water at all stations 
after the rain storm (Figure 5.f) and facilitated by reduced tidal currents due to neap tidal conditions 
(Figure 5.c), deposition rates doubled throughout all three zones in this period. 
 

 

 

Figure 6. Deposition rates for each of the three zones along the transect (see Figure 2 for locations). Results cover two 
subsequent measurement periods and are standardized to deposition rates per tide.  

 
 
4. Discussion 
 
Observed turbulence profiles in the mangrove fringe provide a first impression of the impacts of vegetation 
density on the vertical distribution of turbulent energy and can be inferred on the cross-shore dynamics 
over a mangrove fringe with gradually increasing vegetation densities. The pneumatophore cover in the 
fringe generally increased from sparse at the front of the fringe to a dense cover at the interface with the 
forest, forming a gradual transition from the bare tidal flat to the densely vegetated forest zone (Table 1). 

 The higher near-bed velocity and turbulence in the sparse canopy, compared to the dense canopy 
(Figure 7), allowed for greater bed shear stresses than the dense canopy, as has been observed before in 
flume experiments with flexible vegetation mimics on a fine sand bed (Le Bouteiller and Venditti, 2015). 
Inferring this trend to the bare tidal flat suggests even greater near-bed velocities, in line with generally 
observed log-normal velocity profiles over bare beds, and consequently higher bed shear stresses (e.g. 
Bouma et al., 2007). The reduction of the bed shear in the pneumatophore fringe allowed for enhanced 
sediment settling and hence deposition rates in the fringe were generally substantially higher than on the 
tidal flat (Figure 6).  

The limited deposition on the tidal flat is corroborated by the observed sediment concentrations that 
were initially found to increase in the landward direction (Figure 5.d-e), which could indicate re-
entrainment of sediments. However, the increase in suspended sediment concentrations after a rain storm 
reversed this trend into a general decline of the concentration over the flat (Figure 5.f). This event 
coincided with a period of reduced (neap) tidal dynamics (Figure 5.c) that may have caused the turbulence 
levels and bed shear on the flats and in the fringe to drop, potentially explaining why the re-entrainment 
observed in the earlier two days did not occur on the last observation day (Figure 5.f).  

Enhanced turbulence above the (denser) pneumatophore canopies in the fringe has the potential to carry 
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greater suspended sediment concentrations (Tinoco and Coco, 2016; Yang et al., 2016). Regardless, 
sediment concentrations in the forest were generally substantially lower than those just in front of the 
fringe (Figure 5.d-f) and hence deposition rates in the forest remained lower than those within the fringe 
(Figure 6). This pattern follows general deposition patterns across vegetation fringes, showing a general 
decline of the deposition rate with distance into the vegetation (Bouma et al., 2007; Le Bouteiller and 

Venditti, 2015; Van Santen et al., 2007).  
Spatial variability of sediment accretion rates within the fringe have not been addressed in this study, but 

are likely to exist due to the observed variations in current velocities and turbulence production in variable 
density pneumatophore canopies (cf. Norris et al., 2017). The effect of the varying pneumatophore density 
on turbulence matched the findings from more controllable lab experiments on the hydrodynamic 
properties of flows within and above pneumatophore canopies (Horstman et al., in prep.). These 
experiments were run for real pneumatophores at vegetation densities of φ = 0.0023, 0.0049 and 0.0086.  

 
 

Figure 7. Comparison of (a,b) observed velocity and (c,d) turbulence profiles in the field with data from an 
experimental study with real pneumatophores in a flume. Field observations show quarter-hourly vertical profiles of 
the data presented in Figure 4, shaded from green (flood) to blue (ebb). Flume data were obtained for pneumatophore 

densities φ = 0.0086 (a,c) and 0.0023 (b,d) and a free-stream velocity (without pneumatophores) of 0.10 m/s. The 
elevation on the vertical axis is standardized by the average canopy height of the pneumatophores hc. The thicker 

printed profiles are those for which the highest observed velocity is closest to the free-stream velocity in the flume. 
 
The field data were compared to a set of experiments with a 30 cm water depth and with a constant flow 

forcing causing a free-stream velocity of 0.10 m/s prior to introduction of the pneumatophores (Figure 7). 
For the dense pneumatophore canopy, the velocity profiles observed in the flume for a steady 
unidirectional current tend to form the envelope for the field observations in dynamic tidal currents (Figure 
7.a). Compared to the regular log-normal velocity profile, flow within the canopy (z/hc < 1) was reduced 
and above the canopy (z/hc > 1) currents were enhanced, with near-bed velocities up to ten times lower than 
the above-canopy velocities (Figure 4.a). In the sparse pneumatophores in the field, near-bed velocities 
increased compared to those in the denser canopies, similar to the flume measurements (Figure 7.b). 
However, free-stream velocities at six times the canopy height of the sparse pneumatophores became 
greater than those in the flume. It is uncertain as to what extent the latter might have been caused by spatial 
variations in the free-stream velocity over the variable-density pneumatophore canopy in the field. 

The shear over the top of a dense canopy can produce canopy-scale Kelvin Helmholtz vortices (Nepf, 
2012a), which likely explains the peak in the turbulence profile just above the canopy in the flume 
experiments (Figure 7.c-d). Because the shear over the dense pneumatophore canopy in the field was 
substantial (Figure 7.a), there was a great potential for the generation of canopy-scale turbulence just above 
the dense canopy. Meanwhile, turbulence was very low within the dense pneumatophores, a possible 
consequence of the reduced penetration of canopy-scale turbulence into the canopy and the reduced 
generation of stem-scale turbulence due to the lower flow speeds within the dense canopy (Nepf, 2012a). 
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For the sparse canopy, near-bed velocities were only about four times smaller than the above-canopy 
velocities (Figure 7.b), limiting the vertical shear and hence the generation of canopy-scale turbulence, 
while the higher within-canopy velocities and the greater spacing of the pneumatophores could enhance 
within-canopy turbulence (Figure 7.d). The maximum turbulence inside the dense canopy was 3.5 times 
lower than in the sparse pneumatophores, whereas turbulence at 0.4 m height was more than six times 
greater over the dense canopy than over the sparse canopy (Figure 4.c,d). 

Turbulence levels in the field were much higher than in the flume, especially at greater elevations above 
the vegetation. For the sparse canopy, turbulence peaked at about 3.5 times the average pneumatophore 
height (Figure 7.d), but over the dense canopy turbulence was found to increase beyond the highest 
observation at four times the canopy height (Figure 7.c). The much greater increase of turbulence with the 
height above the bed in the field might be caused by the greater water depths compared to the flume, 
potentially allowing for larger-scale boundary-layer vortices to develop over the vegetation (Nepf, 2012a). 
Another contributing factor could be the presence of saplings and trees in the mangrove fringe (see Figure 
3.a-b), enhancing turbulence production at greater heights above the bed.  

Unlike the clear relations between pneumatophore densities and the near-bed turbulence, no correlations 
between the near-bed turbulence and suspended sediment concentrations could be derived from the present 
observations (Figure 4). Likewise, greater flow speeds did not necessarily coincide, in time or in place, 
with higher suspended sediment concentrations (Figure 5). Hence it was concluded that near-bed 
conditions were not the primary control on the instantaneous sediment concentrations at this site. Rather, 
confounding factors such as (episodic) inputs of sediments were found to have a major impact on sediment 
concentrations in the water, showing that sediments are likely advected into the study site.  

 
 
5. Conclusions 
 
Field observations of sediment deposition rates across a mangrove fringe showed the deposition in the 
fringing pneumatophore zone, the area that separates the tidal flats and the mangrove forest, to be greater 
than in the adjoining zones. The enhanced deposition in the pneumatophore fringe followed from a sharp 
decline in the suspended sediment concentrations across this zone, as the reduction of near-bed velocities 
and turbulence in the pneumatophores facilitated sediment settling and limited resuspension. Conversely, 
sediment concentrations were found to increase over the tidal flats in front of the pneumatophores, where 
the lack of vegetation allowed for greater near-bed dynamics that limited the deposition and might even 
have facilitated resuspension of sediments. Sediment concentrations within the forest were consistently 
low, thereby limiting the within-forest deposition rates.  

Within the fringe, near-bed velocities and turbulence were found to be much greater in a sparse 
pneumatophore canopy than in a dense pneumatophore canopy. Conversely, the lower within-canopy 
velocities in the denser pneumatophores resulted in enhanced shear across the top of the canopy, creating 
stronger turbulence above the pneumatophores. Nevertheless, observed trends in turbulence profiles varied 
across the different tidal cycles that were studied and deviated from the turbulence profiles that were 
collected in a controlled flume experiment with real pneumatophores. Also, the turbulence profiles did not 
provide unequivocal relations with concurrently observed sediment concentrations in the water column. 
These relations must depend on a range of other confounding factors, such as larger scale transport 
processes and variable sediment inputs. Contributions to the deposition patterns across mangrove fringes 
by these other confounding factors will be addressed in future work. 
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